
Introduction to
Computational
Astrophysical
Hydrodynamics

the Open Astrophysics Bookshelf Michael Zingale

© 2013, 2014, 2015, 2016, 2017 Michael Zingale
document git version: ae2370a3e0d5 . . .
August 29, 2023

the source for these notes are available online (via git):
https://github.com/Open-Astrophysics-Bookshelf/numerical_exercises

cbna

This work is licensed under the Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International (CC BY-NC-SA 4.0) license.

ii

https://github.com/Open-Astrophysics-Bookshelf/numerical_exercises

Chapter Listing

list of figures xiii

list of exercises xv

preface xvii

I Basics 1

1 Simulation Overview 3

2 Classification of PDEs 21

3 Finite-Volume Grids 25

II Advection and Hydrodynamics 35

4 Advection Basics 37

5 Second- (and Higher-) Order Advection 49

6 Burgers’ Equation 81

7 Euler Equations: Theory 93

iii

8 Euler Equations: Numerical Methods 115

III Elliptic and Parabolic Problems 161

9 Elliptic Equations and Multigrid 163

10 Diffusion 185

IV Multiphysics applications 201

11 Model Multiphysics Problems 203

12 Reactive Flow 209

13 Planning a Simulation 217

V Low Speed Hydrodynamics 223

14 Incompressible Flow and Projection Methods 225

15 Low Mach Number Methods 243

VI Code Descriptions 253

A Using hydro_examples 255

B Using pyro 259

C Using hydro1d 265

References 267

iv

Table of Contents

list of figures xiii

list of exercises xv

preface xvii

I Basics 1

1 Simulation Overview 3
1.1 What is simulation? . 3

1.2 Numerical basics . 5

1.2.1 Sources of error . 5

1.2.2 Differentiation and integration . 6

1.2.3 Root finding . 11

1.2.4 Norms . 13

1.2.5 ODEs . 14

1.2.6 FFTs . 18

2 Classification of PDEs 21
2.1 Introduction . 21

2.2 Hyperbolic PDEs . 21

2.3 Elliptic PDEs . 22

2.4 Parabolic PDEs . 22

3 Finite-Volume Grids 25
3.1 Discretization . 25

3.2 Grid basics . 26

3.3 Finite-volume grids . 27

3.3.1 Differences and order of accuracy 29

3.3.2 Conservation . 30

3.3.3 Boundary conditions with finite-volume grids 30

3.4 Numerical implementation details . 31

3.5 Going further . 32

v

II Advection and Hydrodynamics 35

4 Advection Basics 37
4.1 The linear advection equation . 37

4.2 First-order advection in 1-d and finite-differences 38

4.3 Stability . 42

4.3.1 Domain of dependence . 43

4.4 Implicit-in-time . 45

4.5 Eulerian vs. Lagrangian frames . 46

4.6 Errors and convergence rate . 47

5 Second- (and Higher-) Order Advection 49
5.1 Advection and the finite-volume method 49

5.2 Second-order predictor-corrector scheme 50

5.2.1 Limiting . 53

5.2.2 Reconstruct-evolve-average . 57

5.3 Method of lines approach . 60

5.4 Multi-dimensional advection . 62

5.4.1 Dimensionally split . 64

5.4.2 Unsplit multi-dimensional advection 66

5.4.3 Timestep limiter for multi-dimensions 67

5.4.4 Method-of-lines in multi-dimensions 70

5.5 High-Order Finite difference methods . 71

5.5.1 The problem with higher-order finite volume methods 72

5.5.2 Finite differences . 72

5.5.3 WENO reconstruction . 73

5.6 Going further . 78

5.7 pyro experimentation . 80

6 Burgers’ Equation 81
6.1 Burgers’ equation . 81

6.2 Characteristic tracing . 88

6.3 Going further . 88

6.4 WENO methods, nonlinear equations, and flux-splitting 89

7 Euler Equations: Theory 93
7.1 Euler equation properties . 93

7.2 The Riemann problem . 99

7.2.1 Rarefactions . 99

7.2.2 Shocks . 103

7.2.3 Finding the Star State . 107

7.2.4 Complete Solution . 108

7.3 Other thermodynamic equations . 110

vi

8 Euler Equations: Numerical Methods 115
8.1 Introduction . 115

8.2 Reconstruction of interface states . 115

8.2.1 Piecewise constant . 117

8.2.2 Piecewise linear . 117

8.2.3 Piecewise parabolic . 121

8.2.4 Flattening and contact steepening 126

8.2.5 Limiting on characteristic variables 127

8.3 Riemann solvers . 128

8.4 Conservative update . 130

8.4.1 Artificial viscosity . 130

8.5 Boundary conditions . 130

8.6 Multidimensional problems . 131

8.6.1 3-d unsplit . 134

8.7 Source terms . 134

8.8 Simple geometries . 136

8.9 Some Test problems . 139

8.9.1 Shock tubes . 139

8.9.2 Sedov blast wave . 142

8.9.3 Advection . 145

8.9.4 Slow moving shock . 147

8.9.5 Two-dimensional Riemann problems 148

8.10 Method of lines integration and higher order 149

8.11 Thermodynamic issues . 151

8.11.1 Defining temperature . 151

8.11.2 General equation of state . 152

8.12 WENO methods for the Euler equations 155

8.12.1 Extensions . 156

III Elliptic and Parabolic Problems 161

9 Elliptic Equations and Multigrid 163
9.1 Elliptic equations . 163

9.2 Fourier Method . 163

9.3 Relaxation . 167

9.3.1 Boundary conditions . 168

9.3.2 Residual and true error . 170

9.3.3 Norms . 170

9.3.4 Performance . 172

9.3.5 Frequency/wavelength-dependent error 173

9.4 Multigrid . 175

9.4.1 Prolongation and restriction on cell-centered grids 176

vii

9.4.2 Multigrid cycles . 179

9.4.3 Bottom solver . 179

9.4.4 Boundary conditions throughout the hierarchy 180

9.4.5 Stopping criteria . 181

9.5 Solvability . 182

9.6 Going Further . 183

9.6.1 Red-black Ordering . 183

9.6.2 More General Elliptic Equations 184

10 Diffusion 185
10.1 Diffusion . 185

10.2 Explicit differencing . 186

10.3 Implicit with direct solve . 188

10.4 Implicit multi-dimensional diffusion via multigrid 194

10.4.1 Convergence . 195

10.5 Non-constant Conductivity . 196

10.6 Diffusion in Hydrodynamics . 199

IV Multiphysics applications 201

11 Model Multiphysics Problems 203
11.1 Integrating Multiphysics . 203

11.2 Ex: diffusion-reaction . 204

11.3 Ex: advection-diffusion . 206

11.3.1 Convergence without an analytic solution 208

12 Reactive Flow 209
12.1 Introduction . 209

12.2 Operator splitting approach . 212

12.2.1 Adding species to hydrodynamics 213

12.2.2 Integrating the reaction network 215

12.2.3 Incorporating explicit diffusion . 215

12.3 Burning modes . 215

12.3.1 Convective burning . 215

12.3.2 Deflagrations . 215

12.3.3 Detonations . 216

13 Planning a Simulation 217
13.1 How to setup a simulation? . 217

13.2 Dimensionality and picking your resolution 217

13.3 Boundary conditions . 218

13.4 Timestep considerations . 219

13.5 Convergence and multiphysics . 220

viii

13.6 Computational cost . 220

13.7 I/O . 220

V Low Speed Hydrodynamics 223

14 Incompressible Flow and Projection Methods 225
14.1 Incompressible flow . 225

14.2 Projection methods . 227

14.3 Cell-centered approximate projection solver 228

14.3.1 Advective velocity . 230

14.3.2 MAC projection . 234

14.3.3 Reconstruct interface states . 235

14.3.4 Provisional update . 235

14.3.5 Approximate projection . 236

14.4 Boundary conditions . 238

14.5 Bootstrapping . 238

14.6 Test problems . 239

14.6.1 Convergence test . 239

14.7 Extensions . 239

15 Low Mach Number Methods 243
15.1 Low Mach divergence constraints . 243

15.2 Multigrid for Variable-Density Flows . 245

15.2.1 Test problem . 246

15.3 Atmospheric flows . 247

15.3.1 Equation Set . 247

15.3.2 Solution Procedure . 249

15.3.3 Timestep constraint . 251

15.3.4 Bootstrapping . 251

15.4 Combustion . 252

15.4.1 Species . 252

15.4.2 Constraint . 252

15.4.3 Solution Procedure . 252

VI Code Descriptions 253

A Using hydro_examples 255
A.1 Introduction . 255

A.2 Getting hydro_examples . 255

A.3 hydro_examples codes . 256

B Using pyro 259

ix

B.1 Introduction . 259

B.2 Getting pyro . 259

B.3 pyro solvers . 260

B.4 pyro’s structure . 260

B.5 Running pyro . 261

B.6 Output and visualization . 261

B.7 Testing . 262

C Using hydro1d 265
C.1 Introduction . 265

C.2 Getting hydro1d . 265

C.3 hydro1d’s structure . 265

C.4 Running hydro1d . 266

C.5 Problem setups . 266

References 267

x

List of Figures

1.1 The fluid scale. 4

1.2 Difference approximations to the derivative of sin(x) 8

1.3 Error in numerical derivatives . 9

1.4 Integration rules . 11

1.5 Convergence of Newton’s method for root finding 12

1.6 The 4th-order Runge-Kutta method . 16

1.7 Fourier transform of f (x) = sin(2πk0x + π/4) 20

3.1 Types of structured grids . 28

3.2 A simple 1-d finite-volume grid with ghost cells 31

3.3 Domain decomposition example . 32

4.1 Characteristics for linear advection . 38

4.2 A simple finite-difference grid . 39

4.3 First-order finite-difference solution to linear advection 41

4.4 FTCS finite-difference solution to linear advection 41

4.5 Domain of dependence space-time diagram 44

4.6 First-order implicit finite-difference solution to linear advection 46

5.1 A finite-volume grid with valid cells labeled 50

5.2 The input state to the Riemann problem 51

5.3 Reconstruction at the domain boundary 52

5.4 Second-order finite-volume advection . 53

5.5 The effect of no limiting on initially discontinuous data 55

5.6 The effect of limiters on initially discontinuous data 56

5.7 Piecewise linear slopes with an without limiting 57

5.8 The Reconstruct-Evolve-Average procedure 59

5.9 Convergence of second-order finite-volume advection 60

5.10 Effect of different limiters on evolution 61

5.11 Method-of-lines spatial reconstruction . 62

5.12 A 2-d grid with zone-centered indexes . 63

5.13 The construction of an interface state with the transverse component . . 68

5.14 Advection of Gaussian profile in 2-d . 69

5.15 Advection of tophat profile in 2-d . 69

5.16 Advection of tophat function with method-of-lines integration 72

xi

5.17 Convergence rate of high-order reconstructions 74

5.18 WENO reconstruction and weights . 76

5.19 High order WENO convergence rates for linear advection 78

5.20 Very high order WENO convergence rates for linear advection 79

6.1 Characteristics for shock initial conditions 82

6.2 Characteristics for rarefaction initial conditions 83

6.3 Rankine-Hugoniot conditions . 84

6.4 Rarefaction solution to the inviscid Burgers’ equation 86

6.5 Shock solutions to the inviscid Burgers’ equation 87

6.6 Comparing PLM and WENO methods for Burgers’ equation 90

6.7 WENO convergence rates for Burgers’ equation 91

7.1 The Sod problem . 100

7.2 The Riemann problem wave structure for the Euler equations 101

7.3 The Hugoniot curves corresponding to the Sod problem 109

7.4 Wave configuration for the Riemann problem 110

7.5 Rarefaction configuration for the Riemann problem 111

8.1 The left and right states for the Riemann problem 116

8.2 Piecewise linear reconstruction of cell average data 118

8.3 The two interface states derived from a cell-center quantity 122

8.4 Piecewise parabolic reconstruction of the cell averages 122

8.5 Integration under the parabola profile for to an interface 123

8.6 Riemann wave structure at each interface 128

8.7 The approximate (2-shock) Hugoniot curves corresponding to the Sod
problem . 129

8.8 The axisymmetric computational domain 138

8.9 Piecewise constant reconstruction Sod problem 140

8.10 Piecewise parabolic reconstruction Sod problem 141

8.11 Piecewise constant reconstruction double rarefaction problem 142

8.12 Piecewise constant reconstruction double rarefaction problem 143

8.13 1-d spherical Sedov problem . 144

8.14 2-d cylindrical Sedov problem . 145

8.15 2-d cylindrical Sedov problem . 146

8.16 Simple advection test . 147

8.17 1-d spherical Sedov problem . 149

8.18 Two-dimensional Riemann problem from [69]. 150

8.19 WENO r = 3 for the Sod test . 157

8.20 WENO r = 5 for the Sod test . 158

8.21 WENO r = 3 for the double rarefaction test 159

9.1 Data centerings for the discrete Laplacian 164

9.2 FFT solution to the Poisson equation . 167

xii

9.3 Node-centered vs. cell-centered data at boundaries 169

9.4 Convergence as a function of number of iterations using Gauss-Seidel
relaxation . 171

9.5 Convergence of smoothing in different norms 173

9.6 Convergence of smoothing in first-order BCs 174

9.7 Smoothing of different wavenumbers . 175

9.8 The geometry for 1-d prolongation and restriction 176

9.9 The geometry for 2-d prolongation and restriction 178

9.10 A multigrid hierarchy . 180

9.11 Error in solution as a function of multigrid V-cycle number 182

9.12 Convergence of the multigrid algorithm 183

9.13 Red-black ordering of zones . 184

10.1 Explicit diffusion of a Gaussian . 188

10.2 Underresolved explicit diffusion of a Gaussian 189

10.3 Unstable explicit diffusion . 190

10.4 Error convergence of explicit diffusion . 191

10.5 Implicit diffusion of a Gaussian . 193

10.6 2-d diffusion of a Gaussian . 195

10.7 Comparison of 2-d implicit diffusion with analytic solution 196

10.8 Under-resolved Crank-Nicolson diffusion 197

10.9 Convergence of diffusion methods . 198

11.1 Solution to the diffusion-reaction equation 205

11.2 Viscous Burgers’ equation solution . 207

11.3 Convergence of the viscous Burgers’ equation 208

14.1 Example of a projection . 229

14.2 MAC grid for velocity . 230

14.3 MAC grid data centerings . 234

15.1 Solution and error of a variable-coefficient Poisson problem 247

15.2 Convergence of the variable-coefficient Poisson solver 248

xiii

List of Exercises

1.1 Floating point . 5

1.2 Machine epsilon . 5

1.3 Convergence and order-of-accuracy . 6

1.4 Truncation error . 7

1.5 Second derivative . 8

1.6 Simpson’s rule for integration . 10

1.7 Newton’s method . 13

1.8 ODE accuracy . 15

1.9 FFTs . 19

2.1 Wave equation . 22

2.2 Diffusion timescale . 23

3.1 Finite-volume vs. finite-difference centering 27

3.2 Conservative interpolation . 29

4.1 Linear advection analytic solution . 37

4.2 Perfect advection with a Courant number of 1 40

4.3 A 1-d finite-difference solver for linear advection 40

4.4 FTCS and stability . 41

4.5 Stability of the upwind method . 42

4.6 Stability analysis . 43

4.7 Implicit advection . 45

5.1 A second-order finite-volume solver for linear advection 52

5.2 Limiting and overshoots . 54

5.3 Limiting and reduction in order-of-accuracy 56

5.4 Convergence testing . 58

5.5 ENO stencils . 73

5.6 WENO weights . 75

5.7 WENO reconstruction . 77

5.8 Role of limiters . 80

5.9 Grid effects . 80

5.10 Split vs. unsplit . 80

xiv

6.1 Burgers’ characteristics . 81

6.2 Simple Burgers’ solver . 87

6.3 Conservative form of Burgers’ equation 88

7.1 Primitive variable form of the Euler equations 95

7.2 The eigenvalues of the Euler system . 96

7.4 Characteristic form of the Euler equations 97

7.5 Riemann invariants for gamma-law gas 103

7.6 Shock jump conditions for γ-law EOS . 106

7.7 Hugoniot curves . 108

8.1 Characteristic projection . 120

8.2 The average state reacting the interface 123

8.3 Conservative interpolation . 124

8.4 Eigenvectors for the 2-d Euler equations 133

8.5 Spherical form of primitive variable equations 137

9.1 Smoothing the 1-d Laplace equation . 174

10.1 Explicit diffusion stability condition . 186

10.2 1-d explicit diffusion . 187

10.3 1-d implicit diffusion . 193

10.4 Implicit multi-dimensional diffusion . 195

11.1 Diffusion-reaction system . 205

12.1 Species advection . 210

14.1 An approximate projection . 228

xv

preface

This text started as a set of notes to help new students at Stony Brook University
working on projects in computational astrophysics. They focus on the common meth-
ods used in computational hydrodynamics for astrophysical flows and are written at
a level appropriate for upper-level undergraduates. Problems integrated in the text
help demonstrate the core ideas. An underlying principle is that source code is pro-
vided for all the methods described here (including all the figures). This allows the
reader to explore the routines themselves.

These notes are very much a work in progress, and new chapters will be added with
time. The page size is formatted for easy reading on a tablet or for 2-up printing in
a landscape orientation on letter-sized paper.

This text is part of the Open Astrophysics Bookshelf. Contributions to these notes
are welcomed. The LATEX source for these notes is available online on github at:

https://github.com/Open-Astrophysics-Bookshelf/numerical_exercises

Simply fork the notes, hack away, and submit a pull-request to add your contribu-
tions. All contributions will be acknowledged in the text.

A PDF version of the notes is always available at:

https://open-astrophysics-bookshelf.github.io/numerical_exercises/CompHydroTutorial.

pdf

These notes are updated at irregular intervals, usually when I have a new student
working with me, or if I am using them for a course.

The source (usually python) for all the figures is also contained in the main git repo.
The line drawings of the grids are done using the classes in grid_plot.py. This needs
to be in your PYTHONPATH if you wish to run the scripts.

The best way to understand the methods described here is to run them for yourself.
There are several sets of example codes that go along with these notes:

1. hydro_examples is a set of simple 1-d, standalone python scripts that illustrate

xvii

https://github.com/Open-Astrophysics-Bookshelf/numerical_exercises
https://open-astrophysics-bookshelf.github.io/numerical_exercises/CompHydroTutorial.pdf
https://open-astrophysics-bookshelf.github.io/numerical_exercises/CompHydroTutorial.pdf
https://github.com/Open-Astrophysics-Bookshelf/numerical_exercises/blob/master/grid_plot.py

some of the basic solvers. Many of the figures in these notes were created using
these codes—the relevant script will be noted in the figure caption.

You can get this set of scripts from github at:
https://github.com/zingale/hydro_examples/

References to the scripts in hydro_examples are shown throughout the text as:

Ï hydro_examples: scriptname

Clicking on the name of the script will bring up the source code to the script
(on github) in your web browser.

More details on the codes available in hydro_examples are described in Ap-
pendix A.

2. The pyro code [86] is a 2-d simulation code with solvers for advection, diffusion,
compressible and incompressible hydrodynamics, as well as multigrid. A gray
flux-limited diffusion radiation hydrodynamics solver is in development. pyro
is designed with clarity in mind and to make experimentation easy.

You can download pyro at:
https://github.com/python-hydro/pyro2/

A brief overview of pyro is given in Appendix B, and more information can be
found at:
http://python-hydro.github.io/pyro2/

3. hydro1d is a simple one-dimensional compressible hydrodynamics code that
implements the piecewise parabolic method from Chapter 8. It can be obtained
from github at:
https://github.com/zingale/hydro1d/

Details on it are given in Appendix C.

Wherever possible we try to use standardized notation for physical quantities, as
listed in Table 1.

These notes benefited immensely from numerous conversations and an ongoing col-
laboration with Ann Almgren, John Bell, Andy Nonaka, & Weiqun Zhang—pretty
much everything I know about projection methods comes from working with them.
Discussions with Alan Calder, Sean Couch, Max Katz, Chris Malone, and Doug
Swesty have also been influential in the presentation of these notes.

If you find errors, please e-mail me at michael.zingale@stonybrook.edu, or issue a
pull request to the git repo noted above.

Michael Zingale
Stony Brook University

xviii

https://github.com/zingale/hydro_examples/
https://github.com/python-hydro/pyro2/
http://python-hydro.github.io/pyro2/
https://github.com/zingale/hydro1d/

Table 1: Definition of symbols.

symbol meaning units

A Jacobian matrix N/A

C Lagrangian sound speed, C =
√

Γ1 pρ g m−2 s−1

C CFL number –

c sound speed, c =
√

Γ1 p/ρ m s−1

cp specific heat at constant pressure (cp ≡
∂h/∂T|p,Xk

)
erg g−1 K−1

cv specific heat at constant density (cv ≡
∂e/∂T|ρ,Xk

)
erg g−1 K−1

E specific total energy erg g−1

e specific internal energy erg g−1

F flux vector N/A

g gravitational acceleration cm s−2

Γ1 first adiabatic exponent (Γ1 ≡ d log p/d log ρ|s) –

γ ratio of specific heats, γ = cp/cv –

γe the quantity p/(ρe) + 1 –

H heat sources erg g−1 s−1

Hnuc nuclear energy source erg g−1 s−1

h specific enthalpy erg g−1

I integral under a (piecewise) parabolic polyno-
mial reconstruction

N/A

kth thermal conductivity erg cm−1 s−1 K−1

L matrix of left eigenvectors –

Λ diagonal matrix of eigenvalue –

l left eigenvector N/A

λ eigenvalue N/A

M Mach number, M = |U|/c –

continued on next page

xix

Table 1—continued

symbol meaning units

ω̇k species creation rate s−1

p pressure erg cm−3

q primitive variable vector N/A

R matrix of right eigenvectors –

R(qL, qR) Riemann problem between states qL and qR N/A

r right eigenvector N/A

ρ mass density g cm−3

S source term to the divergence constraint s−1

s specific entropy erg g−1 K−1

T temperature K

t time s

τ specific volume (τ = 1/ρ) cm3 g−1

U total velocity vector, U = (u, v)⊺ in 2-d cm s−1

U conserved variable vector N/A

u x-velocity cm s−1

v y-velocity cm s−1

w characteristic variables vector N/A

Xk mass fraction of the species (∑k Xk = 1) –

xx

Authorship

Primary Author

Michael Zingale (Stony Brook)

Contributions

Thank you to the following people for pointing out typos or confusing remarks in
the text:

• Chen-Hung

• Rixin Li (Arizona)

• Zhi Li (Shanghai Astronomical Observatory)

• Chris Malone

• Sai Praneeth (Waterloo)

• Donald Willcox (Stony Brook)

Material on WENO schemes was contributed by Ian Hawke (Southampton).

See the git log for full details on contributions. All contributions via pull-requests
will be acknowledged here.

xxi

Part I

Basics

Chapter1
Simulation Overview

1.1 What is simulation?

Astronomy is an observational science. Unlike in terrestrial physics, we do not have
the luxury of being able to build a model system and do physical experimentation on
it to understand the core physics. We have to take what nature gives us. Simulation
enables us to build a model of a system and allows us to do virtual experiments to
understand how this system reacts to a range of conditions and assumptions.

It’s tempting to think that one can download a simulation code, set a few parame-
ters, maybe edit some initial conditions, run, and then have a virtual realization of
some astrophysical system that you are interested in. Just like that. In practice, it is
not this simple. All simulation codes make approximations—these start even before
one turns to the computer, simply by making a choice of what equations are to be
solved. The main approximation that we will follow here, is the fluid approximation
(see Figure 1.1). We don’t want to focus on the motions of the individual atoms, nu-
clei, electrons, and photons in our system, so we work on a scale that is much larger
than the mean free path of the system. This allows us to describe the bulk properties
of a fluid element, which in turn is small compared to the system of interest.

Within the fluid approximation, additional approximations are made, both in terms
of the physics included and how we represent a continuous fluid in the finite-memory
of a computer (the discretization process).

Typically, we have a system of PDEs, and we need to convert the continuous func-
tional form of our system into a discrete form that can be represented in the finite
memory of a computer. This introduces yet more approximation.

Blindly trusting the numbers that come out of the code is a recipe for disaster. You
don’t stop being a physicist the moment you execute the code—your job as a com-

git version: ae2370a3e0d5 . . . 3

4 Chapter 1. Simulation Overview

atomic scale
(mean free path)

fluid element

star

Figure 1.1: The fluid scale sits in an intermediate range—much smaller than the system
of interest (a star in this case), but much larger than the mean free path.

putational scientist is to make sure that the code is producing reasonable results, by
testing it against known problems and your physical intuition.

Simulations should be used to gain insight and provide a physical understanding.
Because the systems we solve are so nonlinear, small changes in the code or the pro-
gramming environment (compilers, optimization, etc.) can produce large differences
in the numbers coming out of the code. That’s not a reason to panic. As such it
is best not to obsess about precise numbers, but rather the trends our simulations
reveal. To really understand the limits of your simulations, you should do parameter
and convergence studies.

There is no “über-code”. Every algorithm begins with approximations and has lim-
itations. Comparisons between different codes are important and common in our
field (see, for example, [30, 31, 33]), and build confidence in the results that we are
on the right track.

To really understand your simulations, you need to know what the code your are
using is doing under the hood. This means understanding the core methods used
in our field. These notes are designed to provide a basic tour of some of the more
popular methods, referring to the key papers for full derivations and details. The best

1.2—Numerical basics 5

way to learn is to code up these methods for yourself. A companion python code,
pyro is available to help, and most of the exercises (or corresponding figures) have
links to simple codes that are part of the hydro_examples repository*. Descriptions
and links to these codes are found in the appendices.

1.2 Numerical basics

We assume a familiarity with basic numerical methods, which we summarize below.
Any book on numerical methods can provide a deeper discussion of these methods.
Some good choices are the texts by Garcia [35], Newman [56], and Pang [60].

1.2.1 Sources of error

With any algorithm, there are two sources of error we are concerned with: roundoff
error and truncation error.

Roundoff arises from the error inherent in representing a floating point number with
a finite number of bits in the computer memory. An excellent introduction to the
details of how computers represent numbers is provided in [38].

Exercise 1.1

In your choice of programming language, create a floating point variable
and initialize it to 0.1. Now, print it out in full precision (you may need
to use format specifiers in your language to get all significant digits the
computer tracks).
You should see that it is not exactly 0.1 to the computer—this is the
floating point error. The number 0.1 is not exactly representable in the
binary format used for floating point.

Exercise 1.2

To see roundoff error in action, write a program to find the value of ϵ for
which 1 + ϵ = 1. Start with ϵ = 1 and iterate, halving ϵ each iteration
until 1 + ϵ = 1. This last value of ϵ for which this was not true is the
machine epsilon. You will get a different value for single- vs. double-
precision floating point arithmetic.

Some reorganization of algorithms can help minimize roundoff, e.g. avoiding the

*look for theÏ symbol.

6 Chapter 1. Simulation Overview

subtraction of two very large numbers by factoring as:

x3 − y3 = (x− y)(x2 + xy + y2) , (1.1)

but roundoff error will always be present at some level.

Truncation error is a feature of an algorithm—we typically approximate an oper-
ator or function by expanding about some small quantity. When we throw away
higher-order terms, we are truncating our expression, and introducing an error in
the representation. If the quantity we expand about truly is small, then the error is
small. A simple example is to consider the Taylor series representation of sin(x):

sin(x) =
∞

∑
n=1

(−1)n−1 x2n−1

(2n− 1)!
(1.2)

For |x| ≪ 1, we can approximate this as:

sin(x) ≈ x− x3

6
(1.3)

in this case, our truncation error has the leading term ∝ x5, and we say that our
approximation is O(x5), or 5th-order accurate.

Exercise 1.3

We will be concerned with the order-of-accuracy of our methods, and a
good way to test whether our method is behaving properly is to perform
a convergence test. Consider our 5th-order accurate approximation to
sin(x) above. Pick a range of x’s (< 1), and compute the error in our
approximation as

ϵ ≡ sin(x)− [x− x3/6]

and show that as you cut x in half, |ϵ| reduces by 25—demonstrating
5th-order accuracy.

This demonstration of measuring the error as we vary the size of our small parameter
is an example of a convergence test.

1.2.2 Differentiation and integration

For both differentiation and integration, there are two cases we might encounter:

1. We have function values, f0, f1, . . ., at a discrete number of points, x0, x1, . . .,
and we want to compute the derivative at a point or integration over a range of
points.

2. We know a function analytically and we want to construct a derivative or inte-
gral of this function numerically.

1.2—Numerical basics 7

In these notes, we will mainly be concerned with the first case.

Differentiation of discretely-sampled function

Consider a collection of equally spaced points, labeled with an index i, with the
physical spacing between them denoted ∆x. We can express the first derivative of a
quantity a at i as:

∂a
∂x

∣∣∣∣
i
≈ ai − ai−1

∆x
(1.4)

or
∂a
∂x

∣∣∣∣
i
≈ ai+1 − ai

∆x
(1.5)

(Indeed, as ∆x → 0, this is the definition of a derivative we learned in calculus.) Both
of these are one-sided differences. By Taylor expanding the data about xi, we see

ai+1 = ai + ∆x
∂a
∂x

∣∣∣∣
i
+

1
2

∆x2 ∂2a
∂x2

∣∣∣∣
i
+ . . . (1.6)

Solving for ∂a/∂x|i, we see

∂a
∂x

∣∣∣∣
i
=

ai − ai−1

∆x
− 1

2
∆x

∂2a
∂x2

∣∣∣∣
i
+ . . . (1.7)

=
ai − ai−1

∆x
+O(∆x) (1.8)

where O(∆x) indicates that the leading term in the error for this approximation is
∼ ∆x†. We say that this is first order accurate. This means that we are neglecting terms
that scale as ∆x or to higher powers. This is fine if ∆x is small. This error is our trun-
cation error—just as discussed above, it arises because our numerical approximation
throws away higher order terms. The approximation ∂a/∂x|i = (ai+1 − ai)/∆x has
the same order of accuracy.

Exercise 1.4

Show that a centered difference,

∂a
∂x

∣∣∣∣
i
=

ai+1 − ai−1

2∆x

is second order accurate, i.e. its truncation error is O(∆x2).

Figure 1.2 shows the left- and right-sided first-order differences and the central dif-
ference as approximations to sin(x). Generally speaking, higher-order methods have

†in some texts, you see this O(∆xn) referred to as “big O notation”

8 Chapter 1. Simulation Overview

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

∆x

exact
left-sided
right-sided
centered

Figure 1.2: A comparison of one-sided and centered difference approximations to the
derivative of sin(x).Ï hydro_examples: derivatives.py

lower numerical error associated with them, and also involve a wider range of data
points.

Second- and higher-order derivatives can be constructed in the same fashion.

Exercise 1.5

Using the Taylor expansions for ai+1 and ai−1, find a difference approxi-
mation to the second derivative at i.

Differentiation of an analytic function

An alternate scenario is when you know the analytic form of the function, f (x), and
are free to choose the points where you evaluate it. Here you can pick a δx and
evaluate the derivative as

d f
dx

∣∣∣∣
x=x0

=
f (x0 + δx)− f (x0)

δx
(1.9)

An optimal value for δx requires a balance of truncation error (which wants a small
δx) and roundoff error (which becomes large when δx is close to machine ϵ). Fig-
ure 1.3 shows the error for the numerical derivative of f (x) = sin(x) at the point
x0 = 1, as a function of δx. A nice discussion of this is given in [85]. A good rule-

https://github.com/zingale/hydro_examples/blob/master/basic_numerics/derivatives/derivatives.py

1.2—Numerical basics 9

10−15 10−13 10−11 10−9 10−7 10−5 10−3 10−1

δx

10−10

10−8

10−6

10−4

10−2

100

er
ro

r i
n

di
ffe

re
nc

e
ap

pr
ox

im
at

io
n

Figure 1.3: Error in the numerical approximation of the derivative of f (x) = sin(x) at
x0 = 1 as a function of the spacing δx. For small δx, roundoff error dominates the error
in the approximation. For large δx, truncation error dominates.
Ï hydro_examples: deriv_error.py

of-thumb is to pick δx ≈ √ϵ, where ϵ is machine epsilon, to balance roundoff and
truncation error.

Comparing the result with different choices of δx allows for error estimation and an
improvement of the result by combining the estimates using δx and δx/2 (this is the
basis for a method called Richardson extrapolation).

Integration

In numerical analysis, any integration method that is composed as a weighted sum
of the function evaluated at discrete points is called a quadrature rule.

If we have a function sampled at a number of equally-spaced points, x0 ≡ a, x1, . . . , xN ≡
b‡, we can construct a discrete approximation to an integral as:

I ≡
∫ b

a
f (x)dx ≈ ∆x

N−1

∑
i=0

f (xi) (1.10)

where ∆x ≡ (b − a)/N is the width of the intervals (see the top-left panel in Fig-
ure 1.4). This is a very crude method, but in the limit that ∆x → 0 (or N → ∞), this
will converge to the true integral. This method is called the rectangle rule. Note that

‡Note that this is N intervals and N + 1 points

https://github.com/zingale/hydro_examples/blob/master/basic_numerics/derivatives/deriv_error.py

10 Chapter 1. Simulation Overview

here we expressing the integral over the N intervals using a simple quadrature rule
in each interval. Summing together the results of the integral over each interval to
get the result in our domain is called compound integration.

We can get a more accurate answer for I by interpolating between the points. The
simplest case is to connect the sampled function values, f (x0), f (x1), . . . , f (xN) with
a line, creating a trapezoid in each interval, and then simply add up the area of all of
the trapezoids:

I ≡
∫ b

a
f (x)dx ≈ ∆x

N−1

∑
i=0

f (xi) + f (xi+1)

2
(1.11)

This is called the trapezoid rule (see the top-right panel in Figure 1.4). Note here we
assume that the points are equally spaced.

One can keep going, but practically speaking, a quadratic interpolation is as high as
one usually encounters. Fitting a quadratic polynomial requires three points.

Exercise 1.6

Consider a function, f (x), sampled at three equally-spaced points, α, β, γ,
with corresponding function values fα, fβ, fγ. Derive the expression for
Simpson’s rule by fitting a quadratic f̂ (x) = A(x− α)2 + B(x− α) + C
to the three points (this gives you A, B, and C), and then analytically
integrating f̂ (x) in the interval [α, γ]. You should find

I =
γ− α

6
(fα + 4 fβ + fγ) (1.12)

Note that (γ− α)/6 = ∆x/3

For a number of samples, N, in [a, b], we will consider every two intervals together.
The resulting expression is:

I ≡
∫ b

a
f (x)dx ≈ ∆x

3

(N−2)/2

∑
i=0

[f (x2i) + 4 f (x2i+1) + f (x2i+2)] (1.13)

= f (x0) + 4 f (x1) + 2 f (x2) + 4 f (x3) + 2 f (x4) + . . . + 2 f (xN−2) + 4 f (xN−1) + f (xN)

This method is called Simpson’s rule. Note that for 2 intervals / 3 sample points
(N = 2), we only have 1 term in the sum, (N − 2)/2 = 0, and we get the result
derived in Exercise 1.6.

Figure 1.4 shows these different approximations for the case of two intervals (three
points).

Analogous expressions exist for the case of unequally-spaced points.

1.2—Numerical basics 11

a b x

y

a b x

y

a b x

y

Figure 1.4: The rectangle rule (top
left), trapezoid rule (top right)
and Simpson’s rule (left) for inte-
gration.

The compound trapezoid rule converges as second-order over the interval [a, b], while
Simpson’s rule converges as fourth-order.

As with differentiation, if you are free to pick the points where you evaluate f (x), you
can get a much higher-order accurate result. Gaussian quadrature is a very powerful
technique that uses the zeros of different polynomials as the evaluation points for
the function to give extremely accurate results. See the text by Garcia [35] for a nice
introduction to these methods.

1.2.3 Root finding

Often we want to find the root of a function (or the vector that zeros a vector of
functions). The most popular method for root finding is the Newton-Raphson method.
We want to find x, such that f (x) = 0. Start with an initial guess x0 that you believe
is close to the root, then you can improve the guess to the root by an amount δx by
looking at the Taylor expansion about x0:

f (x0 + δx) ∼ f (x0) + f ′(x0)δx + . . . = 0 (1.14)

12 Chapter 1. Simulation Overview

0 1 2 3 4 5

10

5

0

5

10

15

root approx = 5.0

0

2.8 2.9 3.0 3.1 3.2

0.4

0.2

0.0

0.2

0.4

0

0 1 2 3 4 5

10

5

0

5

10

15

root approx = 3.5

1

2.8 2.9 3.0 3.1 3.2

0.4

0.2

0.0

0.2

0.4

1

0 1 2 3 4 5

10

5

0

5

10

15

root approx = 3.05

2

2.8 2.9 3.0 3.1 3.2

0.4

0.2

0.0

0.2

0.4

2

0 1 2 3 4 5

10

5

0

5

10

15

root approx = 3.000609756097561

3

2.8 2.9 3.0 3.1 3.2

0.4

0.2

0.0

0.2

0.4

3

Figure 1.5: The convergence of Newton’s method for finding the root. In each pane,
the red point is the current guess for the root. The solid gray line is the extrapolation
of the slope at the guess to the x-axis, which defines the next approximation to the
root. The vertical dotted line to the function shows the new slope that will be used for
extrapolation in the next iteration.
Ï hydro_examples: roots_plot.py

Keeping only to O(δx), we can solve for the correction, δx:

δx = − f (x0)

f ′(x0)
(1.15)

This can be used to correct out guess as x0 ← x0 + δx, and we can iterate on this
procedure until δx falls below some tolerance. Figure 1.5 illustrates this iteration.

The main “got-ya” with this technique is that you need a good initial guess. In the

https://github.com/zingale/hydro_examples/blob/master/basic_numerics/roots/roots_plot.py

1.2—Numerical basics 13

Taylor expansion, we threw away the δx2 term, but if our guess was far from the root,
this (and higher-orders) term may not be small. Obviously, the derivative must be
non-zero in the region around the root that you search as well.

Exercise 1.7

Code up Newton’s method for finding the root of a function f (x) and test
it on several different test functions.

The secant method for root finding is essentially Newton-Raphson, but instead of using
an analytic derivative, f ′ is estimated as a numerical difference.

Newton’s method has pathologies—it is possible to get into a cycle where you don’t
converge but simply pass through the same set of root approximations. Many other
root finding methods exist, including bisection, which iteratively halves an interval
known to contain a root by looking for the change in sign of the function f (x).
Brent’s method combines several different methods to produce a robust procedure for
root-finding. Most numerical analysis texts will give a description of these.

1.2.4 Norms

Often we will need to measure the “size” of an error to a discrete approximation.
For example, imagine that we know the exact function, f (x) and we have have an
approximation, fi defined at N points, i = 0, . . . , N − 1. The error at each point i
is ϵi = | fi − f (xi)|. But this is N separate errors—we want a single number that
represents the error of our approximation. This is the job of a vector norm.

There are many different norms we can define. For a vector q, we write the norm as
∥q∥. Often, we’ll put a subscript after the norm brackets to indicate which norm was
used. Some popular norms are:

• inf norm:

∥q∥∞ = max
i
|qi| (1.16)

• L1 norm:

∥q∥1 =
1
N

N−1

∑
i=0
|qi| (1.17)

• L2 norm:

∥q∥2 =

[
1
N

N−1

∑
i=0
|qi|2

]1/2

(1.18)

14 Chapter 1. Simulation Overview

• general p-norm

∥q∥p =

[
1
N

N−1

∑
i=0
|qi|p

]1/p

(1.19)

Note that these norms are defined such that they are normalized—if you double
the number of elements (N), the normalization gives you a number that can still be
meaningfully compared to the smaller set. For this reason, we will use these norms
when we look at the convergence with resolution of our numerical methods.

We’ll look into how the choice of norm influences you convergence criterion, but
inspection shows that the inf-norm is local—a element in your vector is given the
entire weight, whereas the other norms are more global.

1.2.5 ODEs

Consider a system of first-order ordinary differential equations,

ẏ = f(t, y(t)) (1.20)

If k represents an index into the vector y, then the kth ODE is

ẏk = fk(t, y(t)) (1.21)

We want to solve for the vector y as a function of time. Note higher-order ODEs can
always be written as a system of first-order ODEs by introducing new variables§.

Broadly speaking, methods for integrating ODEs can be broken down into explicit
and implicit methods. Explicit methods difference the system to form an update that
uses only the current (and perhaps previous) values of the dependent variables in
evaluating f . For example, a first-order explicit update (Euler’s method) appears as:

yn+1
k = yn

k + ∆t fk(tn, yn) (1.22)

where ∆t is the stepsize. Implicit methods instead evaluate the righthand side, f
using the new-time value of y we are solving for.

Perhaps the most popular explicit method for ODEs is the 4th-order Runge-Kutta
method (RK4). This is a multistage method where several extrapolations to the mid-
point and endpoint of the interval are made to estimate slopes and then a weighted
average of these slopes are used to advance the solution. The various slopes are
illustrated in Figure 1.6 and the overall procedure looks like:

yn+1
k = yn

k +
∆t
6
(k1 + 2k2 + 2k3 + k4) (1.23)

§As an example, consider Newton’s second law, ẍ = F/m. We can write this as a system of two
ODEs by introducing the velocity, v, giving us: v̇ = F/m, ẋ = v.

1.2—Numerical basics 15

where the slopes are:

k1 = f (tn, yn
k) (1.24)

k2 = f (tn + ∆t
2 , yn

k +
∆t
2 k1) (1.25)

k3 = f (tn + ∆t
2 , yn

k +
∆t
2 k2) (1.26)

k4 = f (tn + ∆t, yn
k + ∆tk3) (1.27)

Note the similarity to Simpson’s method for integration. This is fourth-order accurate
overall.

Exercise 1.8

Consider the orbit of Earth around the Sun. If we work in the units of
astronomical units, years, and solar masses, then Newton’s gravitational
constant and the solar mass together are simply GM = 4π2 (this should
look familiar as Kepler’s third law). We can write the ODE system de-
scribing the motion of Earth as:

ẋ = v (1.28)

v̇ = −GMr
r3 (1.29)

If we take the coordinate system such that the Sun is at the origin, then,
x = (x, y)⊺ is the position of the Earth and r = xx̂ + yŷ is the radius
vector pointing from the Sun to the Earth.
Take as initial conditions the planet at perihelion:

x0 = 0

y0 = a(1− e)

(v · x̂)0 = −
√

GM
a

1 + e
1− e

(v · ŷ)0 = 0

where a is the semi-major axis and e is the eccentricity of the orbit (these
expressions can be found in any introductory astronomy text that dis-
cusses Kepler’s laws).
Integrate this system for a single orbital period with the first-order Euler
and the RK4 method and measure the convergence by integrating at a
number of different ∆t’s. Note: you’ll need to define some measure of
error, you can consider a number of different metrics, e.g., the change in
radius after a single orbit.

The choice of the stepsize, ∆t, in the method greatly affects the accuracy. In practice
you want to balance the desire for accuracy with the expense of taking lots of small

16 Chapter 1. Simulation Overview

yn

tn tn+ 1

k1

analytic solution
slope yn

tn tn+ 1

k1

k2

analytic solution
slope
half-dt k1 step

yn

tn tn+ 1

k1

k2

k3

analytic solution
slope
half-dt k1 step
half-dt k2 step

yn

tn tn+ 1

k1

k2

k3

k4

analytic solution
slope
half-dt k1 step
half-dt k2 step
full-dt k3 step

yn

tn tn+ 1

k1

k2

k3

k4

yn+ 1

analytic solution
slope
half-dt k1 step
half-dt k2 step
full-dt k3 step
full 4th-order RK step

Figure 1.6: A graphical illustration of the four steps in the 4th-order Runge-Kutta
method. This example is integrating dy/dt = −y.

1.2—Numerical basics 17

steps. A powerful technique for doing this is to use error estimation and an adaptive
stepsize with your ODE integrator. This monitors the size of the truncation error and
adjusts the stepsize, as needed, to achieve a desired accuracy. A nice introduction to
how this works for RK4 is given in [35].

Implicit methods

Implicit methods difference the system in a way that includes the new value of the
dependent variables in the evaluation of fk(t, y(t))—the resulting implicit system is
usually solved using, for example, Newton-Raphson iteration.

A first-order implicit update (called backward Euler) is:

yn+1 = yn + ∆tf(tn+1, yn+1) (1.30)

This is more complicated to solve than the explicit methods above, and generally will
require some linear algebra. If we take ∆t to be small, then the change in the solution,
∆y will be small as well, and we can Taylor-expand the system.

To solve this, we pick a guess, yn+1
0 , that we think is close, to the solution and we will

solve for a correction, ∆y0 such that

yn+1 = yn+1
0 + ∆y0 (1.31)

Using this approximation, we can expand the righthand side vector,

f(tn+1, yn+1) = f(tn+1, yn+1
0) +

∂f
∂y

∣∣∣∣
0

∆y0 + . . . (1.32)

Here we recognize the Jacobian matrix, J ≡ ∂f/∂y,

J =

∂ f1/∂y1 ∂ f1/∂y2 ∂ f1/∂y3 . . . ∂ f1/∂yn

∂ f2/∂y1 ∂ f2/∂y2 ∂ f2/∂y3 . . . ∂ f2/∂yn
...

...
...

. . .
...

∂ fn/∂y1 ∂ fn/∂y2 ∂ fn/∂y3 . . . ∂ fn/∂yn

(1.33)

Putting Eqs. 1.31 and 1.32 into Eq. 1.30, we have:

yn+1
0 + ∆y0 = yn + ∆t

[
f(tn+1, yn+1

0) + J|0 ∆y0

]
(1.34)

Writing this as a system for the unknown correction, ∆y0, we have

(I− ∆t J|0)∆y0 = yn − yn+1
0 + ∆tf(tn+1, yn+1

0) (1.35)

This is a linear system (a matrix × vector = vector) that can be solved using stan-
dard matrix techniques (numerical methods for linear algebra can be found in most
numerical analysis texts). After solving, we can correct our initial guess:

yn+1
1 = yn+1

0 + ∆y0 (1.36)

18 Chapter 1. Simulation Overview

Written this way, we see that we can iterate. To kick things off, we need a suitable
guess—an obvious choice is yn+1

0 = yn. Then we correct this guess by iterating, with
the k-th iteration looking like:

(
I− ∆t J|k−1

)
∆yk−1 = yn − yn+1

k−1 + ∆tf(tn+1, yn+1
k−1) (1.37)

yn+1
k = yn+1

k−1 + ∆yk−1 (1.38)

We will iterate until we find ∥∆yk∥ < ϵ∥yn∥. Here ϵ is a small tolerance, and we use
yn to produce a reference scale for meaningful comparison. Note that here we use a
vector norm to give a single number for comparison.

Note that the role of the Jacobian here is the same as the first derivative in the scalar
Newton’s method for root finding (Eq. 1.15)—it points from the current guess to the
solution. Sometimes an approximation to the Jacobian, which is cheaper to evaluate,
may work well enough for the method to converge.

Explicit methods are easier to program and run faster (for a given ∆t), but implicit
methods work better for stiff problems—those characterized by widely disparate
timescales over which the solution changes [20]¶. A good example of this issue in
astrophysical problems is with nuclear reaction networks (see, e.g., [78]). As with the
explicit case, higher-order methods exist that can provide better accuracy at reduced
cost.

1.2.6 FFTs

The discrete Fourier transform converts a discretely-sampled function from real space
to frequency space, and identifies the amount of power associate with discrete wavenum-
bers. This is useful for both analysis, as well as for solving certain linear problems
(see, e.g., § 9.2).

For a function, f (x) sampled at N equally-spaced points (such that fn = f (xn)), the
discrete Fourier transform, Fk is written as:

Fk =
N−1

∑
n=0

fne−2πink/N k ∈ [0, N − 1] (1.39)

The exponential in the sum brings in a real (cosine terms, symmetric functions) and
imaginary (sine terms, antisymmetric functions) part.

Re(Fk) =
N−1

∑
n=0

fn cos
(

2πnk
N

)
(1.40)

Im(Fk) =
N−1

∑
n=0

fn sin
(

2πnk
N

)
(1.41)

¶Defining whether a problem is stiff can be tricky (see [20] for some definitions). For a system of
ODEs, a large range in the eigenvalues of the Jacobian usually means it is stiff.

1.2—Numerical basics 19

Alternately, it is sometimes useful to combine the real and imaginary parts into an
amplitude and phase.

The inverse transform is:

fn =
1
N

N−1

∑
k=0
Fke2πink/N n ∈ [0, N − 1] (1.42)

The 1/N normalization is a consequence of Parseval’s theorem—the total power in
real space must equal the total power in frequency space. One way to see that this
must be the case is to consider the discrete transform of f (x) = 1, which should be a
delta function.

The FFT of a discrete function has the same amount of information as the original
discrete function. Note that if f (x) is real-valued, then the transform Fk has 2 num-
bers (the real and imaginary parts) for each of our original N real values. This would
mean that we have 2N pieces of information in frequency space where we only had N
pieces of information in real space. Since we cannot create information in frequency
space where there was no corresponding real-space information, half of the Fk’s are
redundant (and F−k = F ⋆

k).

Directly computing Fk for each k takes O(N2) operations. The fast Fourier transform
(FFT) is a reordering of the sums in the discrete Fourier transform to reuse partial
sums and compute the same result in O(N log N) work. Many numerical methods
books can give a good introduction to how to design an FFT algorithm.

Exercise 1.9

Learn how to use a FFT library or the built-in FFT method in your pro-
gramming language of choice. There are various ways to define the nor-
malization in the FFT, that can vary from one library to the next. To
ensure that you are doing things correctly, compute the following trans-
forms:

• sin(2πk0x) with k0 = 0.2. The transform should have all of the
power in the imaginary component only at the frequency 0.2.

• cos(2πk0x) with k0 = 0.2. The transform should have all of the
power in the real component only at the frequency 0.2.

• sin(2πk0x + π/4) with k0 = 0.2. The transform should have
equal power in the real and imaginary components, only at the
frequency 0.2. Since the power is 1, the amplitude of the real and
imaginary parts will be 1/

√
2.

An example of the transform of a single-frequency sine wave with a phase
shift is shown in Figure 1.7.

The FFT assumes that a function is periodic and that the points are evenly spaced. If
the function is not periodic, then a signal will show up in the FFT at a wavenumber

20 Chapter 1. Simulation Overview

0 10 20 30 40 50
x

1
0
1

f(
x
)

0.0 0.5 1.0 1.5 2.0 2.5
k

0.5
0.0
0.5

F
k

Re(F) Im(F)

0.0 0.5 1.0 1.5 2.0 2.5
k

0

1

|F
k
|

0 10 20 30 40 50
x

1
0
1

F
−

1
(F

k
)

Figure 1.7: The Fourier transform of a sine wave with a phase of π/4, f (x) =
sin(2πk0x + π/4) with k0 = 0.2. The top shows the original function. The second
panel shows the real and imaginary components—we see all of the power is at our
input wavenumber, split equally between the real and imaginary parts. The third pane
shows the power (the absolute value of the transform). Finally, the bottom panel shows
the inverse transform of our transform, giving us back our original function.
Ï hydro_examples: fft_simple_examples.py

corresponding to the size of the domain. Related to this, you need to ensure that
your points are evenly spaced even at the boundary, e.g., if you have a function on
[0, 1] represented by 5 points, you want the points to be {0, 0.2, 0.4, 0.6, 0.8} and not
{0, 0.25, 0.5, 0.75, 1}. In the latter case, 0 and 1 are the same function value (due to
periodicity), but the FFT assumes that all points are evenly spaced (even across the
boundary), so it will think that there is a spacing of 0.25 between these end points.

https://github.com/zingale/hydro_examples/blob/master/basic_numerics/FFT/fft_simple_examples.py

Chapter2
Classification of PDEs

2.1 Introduction

Partial differential equations (PDEs) are usually grouped into one of three different
classes: hyperbolic, parabolic, or elliptic. You can find the precise mathematical defini-
tion of these classifications in most books on PDEs, but this formal definition is not
very intuitive or useful. Instead, it is helpful to look at some prototypical examples
of each type of PDE.

When we are solving multiphysics problems, we will see that our system of PDEs
spans these different types. Nevertheless, we will look at solutions methods for each
type separately first, and then use what we learn to solve more complex systems of
equations.

2.2 Hyperbolic PDEs

The canonical hyperbolic PDE is the wave equation:

∂2ϕ

∂t2 = c2 ∂2ϕ

∂x2 (2.1)

The general solution to this is traveling waves in either direction:

ϕ(x, t) = α f0(x− ct) + βg0(x + ct) (2.2)

Here f0 and g0 are set by the initial conditions, and the solution propagates f0 to the
right and g0 to the left at a speed c.

git version: ae2370a3e0d5 . . . 21

22 Chapter 2. Classification of PDEs

Exercise 2.1

Show by substitution that Eq. 2.2 is a solution to the wave equation

A simple first-order hyperbolic PDE is the linear advection equation:

at + uax = 0 (2.3)

This simply propagates any initial profile to the right at the speed u. We will use
linear advection as our model equation for numerical methods for hyperbolic PDEs.

A system of first-order hyperbolic PDEs takes the form:

at + Aax = 0 (2.4)

where a = (a0, a1, . . . aN−1)
⊺ and A is a matrix. This system is hyperbolic if the

eigenvalues of A are real (see [46] for an excellent introduction).

An important concept for hyperbolic PDEs are characteristics—these are curves in
a space-time diagram along which the solution is constant. Associated with these
curves is a speed—this is the wave speed at which information on how the solution
changes is communicated. For a linear PDE (or system of PDEs), these will tell you
everything you need to know about the solution.

2.3 Elliptic PDEs

The canonical elliptic PDE is the Poisson equation:

∇2ϕ = f (2.5)

Note that there is no time-variable here. This is a pure boundary value problem. The
solution, ϕ is determined completely by the source, f , and the boundary conditions.

In contrast to the hyperbolic case, there is no propagation of information here. The
potential, ϕ, is known instantaneously everywhere in the domain. For astrophysi-
cal flows, this commonly arises as the Poisson equation describing the gravitational
potential.

2.4 Parabolic PDEs

The canonical parabolic PDE is the heat equation:

∂ϕ

∂t
= k

∂2 f
∂x2 (2.6)

This has aspects of both hyperbolic and elliptic PDEs.

2.4—Parabolic PDEs 23

The heat equation represents diffusion—an initially sharp feature will spread out into
a smoother profile on a timescale that depends on the coefficient k. We’ll encounter
parabolic equations for thermal diffusion and other types of diffusion (like species,
mass), and with viscosity.

Exercise 2.2

Using dimensional analysis, estimate the characteristic timescale for dif-
fusion from Eq. 2.6.

Chapter3
Finite-Volume Grids

3.1 Discretization

The physical systems we model are described by continuous mathematical functions,
f (x, t) and their derivatives in space and time. To represent this continuous system
on a computer we must discretize it—convert the continuous function into a discrete
number of points in space at one or more discrete instances in time. There are many
different discretization methods used throughout the physical sciences, engineer-
ing, and applied mathematics fields, each with their own strengths and weaknesses.
Broadly speaking, we can divide these methods into grid-based and gridless meth-
ods.

Gridless methods include those which represent the function as a superposition of
continuous basis functions (e.g. sines and cosines). This is the fundamental idea be-
hind spectral methods. A different class of methods are those that use discrete particles
to represent the mass distribution and produce continuous functions by integrating
over these particles with a suitable kernel—this is the basis of smoothed particle hydro-
dynamics (SPH) [55]. SPH is a very popular method in astrophysics.

For grid-based methods, we talk about both the style of the grid (structured vs.
unstructured) and the discretization method, e.g. the finite-difference, finite-volume,
and finite-element methods.

Structured grids are logically Cartesian. This means that you can reference the lo-
cation of any cell in the computational domain via an integer index in each spatial
dimension. From a programming standpoint, the grid structure can be represented
exactly by a multi-dimensional array. Unstructured grids don’t have this simple pat-
tern. A popular type of unstructured grid is created using triangular cells (in 2-d)
or tetrahedra (in 3-d). The main advantage of these grids is that you can easily
represent irregularly-shaped domains. The disadvantage is that the data structures

git version: ae2370a3e0d5 . . . 25

26 Chapter 3. Finite-Volume Grids

required to describe the grid are more complicated than a simple array (and tend to
have more inefficient memory access).

Once a grid is established, the system of PDEs is converted into a system of discrete
equations on the grid. Finite-difference and finite-volume methods can both be ap-
plied to structured grids. The main difference between these methods is that the finite-
difference methods build from the differential form of PDEs while the finite-volume
methods build from the integral form of the PDEs. The attractiveness of finite-volume
methods is that conservation is a natural consequence of the discretization—this is
why they are popular in astrophysics.

In these notes, we will focus on finite-volume techniques on structured grids.

3.2 Grid basics

The grid is the fundamental object for representing continuous functions in a dis-
cretized fashion, making them amenable to computation. In astrophysics, we typi-
cally use structured grids—these are logically Cartesian, meaning that the position of
a quantity on the grid can be specified by a single integer index in each dimension.
This works for our types of problems because we don’t have irregular geometries—
we typically use boxes, disks, or spheres.

We represent derivatives numerically by discretizing the domain into a finite number
of zones (a numerical grid). This converts a continuous derivative into a difference
of discrete data. Different approximations have different levels of accuracy.

There are two main types of structured grids used in astrophysics: finite-difference and
finite-volume. These differ in way the data is represented. On a finite-difference grid,
the discrete data is associated with a specific point in space. On a finite-volume grid,
the discrete data is represented by averages over a control volume. Nevertheless,
these methods can often lead to very similar looking discrete equations.

Consider the set of grids show in Figure 3.1. On the top is a classic finite-difference
grid. The discrete data, fi, are stored as points regularly spaced in x. With this
discretization, the spatial locations of the points are simply xi = i∆x, where i =

0, . . . , N*. Note that for a finite-sized domain, we would put a grid point precisely on
the physical boundary at each end.

The middle grid is also finite-difference, but now we imagine first dividing the do-
main into N cells or zones, and we store the discrete data, fi, at the center of the zone.
This is often called a cell-centered finite-difference grid. The physical coordinate of the
zone centers (where the data lives) are: xi = (i + 1/2)∆x, where i = 0, . . . , N − 1.
Note that now for a finite-sized domain, the left edge of the first cell will be on the

*When you see fi+1, you can think of this as meaning f ((i + 1)∆x) or f (xi + ∆x)

3.3—Finite-volume grids 27

boundary and the first data value will be associated at a point ∆x/2 inside the bound-
ary. A similar situation arises at the right physical boundary. Some finite-difference
schemes stagger the variables, e.g., putting velocity on the boundaries and density at
the center.

Finally, the bottom grid is a finite-volume grid. The layout looks identical to the
cell-centered finite difference grid, except now instead of the discrete data being
associated at a single point in space, keep track of the total amount of f in the zone
(indicated as the shaded regions). Since we generally don’t know how f varies in the
zone, we will typically talk about the average of f , ⟨ f ⟩i, over the zone, and represent
this by a horizontal. The total amount of f in the zone is then simply ∆x⟨ f ⟩i. We
label the left and right edges of a zone with half-integer indices i − 1/2 and i + 1/2.
The physical coordinate of the center of the zone is the same as in the cell-centered
finite-difference case.

In all cases, for a regular structured grid, we take ∆x to be constant. For the finite-
difference grids, the discrete value at each point is obtained from the continuous
function f (x) as:

fi = f (xi) (3.1)

3.3 Finite-volume grids

In the finite-volume discretization, fi represents the average of f (x, t) over the interval
xi−1/2 to xi+1/2, where the half-integer indices denote the zone edges (i.e. xi−1/2 =

xi − ∆x/2):

⟨ f ⟩i =
1

∆x

∫ xi+1/2

xi−1/2

f (x)dx (3.2)

The lower panel of Figure 3.1 shows a finite-volume grid, with the half-integer indices
bounding zone i marked. Here we’ve drawn ⟨ f ⟩i as a horizontal line spanning the
entire zone—this is to represent that it is an average within the volume defined by
the zone edges. To second-order accuracy,

⟨ f ⟩i =
1

∆x

∫ xi+1/2

xi−1/2

f (x)dx ∼ f (xi) (3.3)

Exercise 3.1

Show that Eq. 3.3 is true to O(∆x2) by expanding f (x) as a Taylor series
in the integral, e.g., as:

f (x) = f (xi) + f ′(xi)(x− xi) +
1
2

f ′′(xi)(x− xi)
2

+
1
6

f ′′′(xi)(x− xi)
3 + . . . (3.4)

28 Chapter 3. Finite-Volume Grids

ii− 1 i+ 1i− 2 i+ 2

fi

∆x

ii− 1 i+ 1i− 2 i+ 2

fi

∆x

ii− 1 i+ 1i− 2 i+ 2i− 1/2 i+ 1/2

〈f〉i

∆x

Figure 3.1: Different types of structured grids showing the same data. Top: a finite-
difference grid—the discrete data are associated with a specific point in space. Middle:
a cell-centered finite-difference grid—again the data is at a specific point, but now we
imagine the domain divided into zone with the data living at the center of each zone.
Bottom: a finite-volume grid—here the domain is divided into zones and we store the
average value of the function within each zone.

This means that we can treat the average of f over a zone as simply f (x) evaluated at
the zone center if we only want second-order accuracy. Using the subscript notation,
we can express the average of the zone to the right as ⟨ f ⟩i+1.

When we want to interpolate data on a finite-volume grid, we want to construct an
interpolating polynomial that is conservative. A conservative interpolant reconstructs
a continuous functional form, f (x), from a collection of cell-averages subject to the
requirement that when f (x) is averaged over a cell, it returns the original cell-average.

3.3—Finite-volume grids 29

Exercise 3.2

Consider three cell averages: ⟨ f ⟩i−1, ⟨ f ⟩i, ⟨ f ⟩i+1. Fit a quadratic poly-
nomial through these points,

f (x) = A(x− xi)
2 + B(x− xi) + C (3.5)

where the coefficients, A, B, and C are found by applying the constraints:

⟨ f ⟩i−1 =
1

∆x

∫ xi−1/2

xi−3/2

f (x)dx (3.6)

⟨ f ⟩i =
1

∆x

∫ xi+1/2

xi−1/2

f (x)dx (3.7)

⟨ f ⟩i+1 =
1

∆x

∫ xi+3/2

xi+1/2

f (x)dx (3.8)

Show that the conservative interpolant is:

f (x) =
⟨ f ⟩i−1 − 2⟨ f ⟩i + ⟨ f ⟩i+1

2∆x2 (x− xi)
2+

⟨ f ⟩i+1 − ⟨ f ⟩i−1

2∆x
(x− xi)+

−⟨ f ⟩i−1 + 26⟨ f ⟩i − ⟨ f ⟩i+1

24
(3.9)

The Jupyter notebookÏ hydro_examples: conservative-interpolation.ipynb shows
how to derive these interpolants using SymPy, and gives higher-order interpolants.

3.3.1 Differences and order of accuracy

In practice, when computing derivatives in a finite-volume discretization, we can use
the second-order centered difference from § 1.2.2 treating the finite-volume data as
living at the cell-centers and still be second-order accurate. For higher accuracy, we
can fit a conservative interpolant (as illustrated in exercise 3.2) to a collection of points
and then differentiate the interpolant itself.

Notice that the righthand side of all derivative approximations involve some linear
combinations of fi’s. We call this the stencil. The width of the stencil is a measure of
how many zones on either side of zone i we reach when computing our approxima-
tion.

For example, a second derivative can be discretized as:

d2 f
dx2

∣∣∣∣
i
=

fi+1 − 2 fi + fi−1

∆x2 (3.10)

The stencil on the righthand side encompasses 3 zones.

https://github.com/zingale/hydro_examples/blob/master/finite-volume/conservative-interpolation.ipynb

30 Chapter 3. Finite-Volume Grids

3.3.2 Conservation

The finite-volume grid is useful when dealing with conservation laws. Consider the
following system:

∂U
∂t

+∇ · F(U) = 0 (3.11)

where U is a vector of conserved quantities and F(U) is the flux of each quantity.
This type of system arises, for example, in fluid flow, where the system will represent
conservation of mass, momentum, and energy.

Consider one-dimension. Integrating this system over a zone, and normalizing by
∆x, we have:

1
∆x

∫ xi+1/2

xi−1/2

∂U
∂t

dx = − 1
∆x

∫ xi+1/2

xi−1/2

∂F
∂x

dx (3.12)

On the left, we can take the time derivative out of the integral, and we are left with
the definition of a zone average, so this becomes simply ∂⟨U ⟩i/∂t. On the right, we
apply the divergence theorem, giving:

∂⟨U ⟩i
∂t

= − 1
∆x

{
F(U)|xi+1/2

− F(U)|xi−1/2

}
(3.13)

Independent of how we discretize in time, notice that we have the cell-average on the
left and that the righthand side is simply a difference of fluxes through the interfaces
of the zone. For the i + 1 zone, the update would be:

∂⟨U ⟩i+1

∂t
= − 1

∆x

{
F(U)|xi+3/2

− F(U)|xi+1/2

}
(3.14)

Notice that this shares the flux at the xi+1/2 interface, but with the opposite sign.
When all of the updates are done, the flux through each boundary adds to one
zone and subtracts from its neighbor, exactly conserving (to round-off error) the
quantity U . This cancellation of the sums is an example of a telescoping property, and
is the main reason why finite-volume methods are attractive—conserved quantities
are conserved to machine (roundoff) precision.

Note that conservation is not the same as accuracy. We can construct the fluxes for
our discretized equation by calling a random number generator and we’d still be
conservative, but not at all accurate.

3.3.3 Boundary conditions with finite-volume grids

Imagine that we wish to compute the derivative in every zone using:

∂ f
∂x

∣∣∣∣
i
=

fi − fi−1

∆x
. (3.15)

If we denote the index corresponding to the leftmost zone in our domain as ‘lo’, then
when we try to compute ∂ f /∂x|lo, we will “fall-off” the grid, i.e., we need a value of

3.4—Numerical implementation details 31

ii− 1 i+ 1lo− 1 lo hi hi + 1
∆x

Figure 3.2: A simple 1-d finite-volume grid with a single ghost cell at each end of the
domain. The domain boundaries are indicated by the heavy vertical lines. Here there
are hi− lo + 1 zones used in the discretization of the domain, with the first zone in the
domain labeled lo and the last in the domain labeled hi.

f for zone lo− 1, which is outside the domain. This is where boundary conditions
for our grid come into play.

We implement boundary conditions by extending the computational grid beyond the
physical domain (see Figure 3.2). These additional zones are called ghost cells. They
exist solely to handle the boundary conditions and allow us to use the same update
equation (e.g. Eq. 3.15) for all zones in the domain.

The number of ghostcells needed for the grid depends on how wide the stencils used
in the computation are. The wider the stencil, the more ghostcells are needed.

Periodic boundary conditions would be implemented as:

fhi+1 = flo (3.16)

flo−1 = fhi (3.17)

A simple outflow (zero-gradient) boundary condition would be implemented as:

fhi+1 = fhi (3.18)

flo−1 = flo (3.19)

3.4 Numerical implementation details

The computational grids used for finite-volume techniques maps nicely onto multi-
dimensional arrays. For the cell-average data, a typical array would be dimensioned
as

ilo = ng
ihi = nx + ng - 1
state = np.zeros((nx + 2*ng, nvar))

in python (using NumPy), where nx is the number of zones in the domain and ng is
the number of ghost cells. For some problems, there might be more than one state

32 Chapter 3. Finite-Volume Grids

Figure 3.3: Domain decomposition of the computational domain into 6 separate sub-
domains. Each sub-domain here has 5 × 5 zones. For one of the sub-domains, the
perimeter of ghost cells is illustrated as the red boundary.

variable, so nvar, is the number of state variables that live in each zone. We would
then loop from ilo to ihi to access the state data in the grid interior.

Fluxes are also stored in arrays, but since we cannot index an array with half-integer
indices, the standard convention is that the index i in an array refers to the flux on
the left edge of that zone. I.e.,

flux[i] ←→ Fi−1/2

3.5 Going further

• Domain decomposition: when running on a parallel computer, the work is di-
vided up across processor using domain decomposition. Here, we break the
computational domain into smaller sub-domains, and put one (or more) sub-
domains on each processor. Each sub-domain has its own perimeter of ghost
cells. These are now filled by copying information from the neighboring sub-
domains or using the physical boundary conditions for the full domain, de-
pending on where the ghost cells lie. Figure 3.3 shows a simple decomposition
of a domain into 6 sub-domains.

• AMR for structured grids: adaptive mesh refinement uses a hierarchy of grids
to focus resolution in regions of complex flow. For finite-volume codes, the

3.5—Going further 33

standard reference for AMR is Berger & Colella [15]. Each level is an even
integer multiple finer in resolution, and the grid cells line up with one another
(i.e. in two-dimensions, four fine cells will be completely enclosed by a single
coarse cell, when using a jump in resolution of 2×.) This provides a natural
way to enforce conservation. At coarse-fine interfaces, corrections are done to
ensure consistency.

• Mapped grids: mapped grids are (usually) logically Cartesian grids that use a
function (map) to transform from a rectangular mesh (that corresponds to the
array in memory) to a general curvilinear grid. These maintain the performance
characteristics of structured grids, since any zone can be directly indexed with
an integer for each spatial dimension.

• Lagrangian grids: a hybrid of particle and grid methods is provided by methods
that move particles in a Lagrangian fashion and use a Voronoi tessellation of
these particles to define the grid that finite-volume methods are applied to. See,
for example, the Arepo code paper [75].

Part II

Advection and Hydrodynamics

Chapter4
Advection Basics

4.1 The linear advection equation

The linear advection equation is simply:

at + uax = 0 (4.1)

where a(x, t) is some scalar quantity and u is the velocity at which it is advected
(u > 0 advects to the right). The solution to Eq. 4.1 is to simply take the initial data,
a(x, t = 0), and displace it to the right at a speed u. The shape of the initial data
is preserved in the advection. Many hyperbolic systems of PDEs, e.g. the equations
of hydrodynamics, can be written in a form that looks like a system of (nonlinear)
advection equations, so the advection equation provides important insight into the
methods used for these systems.

Exercise 4.1

Show via substitution that a(x− ut) is a solution to Eq. 4.1 for any choice
of a. This means that the solution is constant along the lines x = ut (the
curves along which the solution is constant are called the characteristics).

Figure 4.1 shows an initial profile, a(x), and the corresponding characteristics in the
t-x plane. With time, since the solution is constant along these characteristics, it
simply each point simply follows the characteristic curve, resulting in a shift of the
profile to the right.

An important concept that we will discuss shortly is stability. Not every discretization
that we write down will be well behaved. For some, our initial state will begin to
“blow-up”, and take on obscenely large and unphysical values after just a few steps.

git version: ae2370a3e0d5 . . . 37

38 Chapter 4. Advection Basics

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

a

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

t

Figure 4.1: (top) Initially sinusoidal distribution (bottom) Characteristic structure for
the linear advection equation u = 1. Note that for this linear equation the characteris-
tics are all parallel (they have the same slope in the t-x plane.

This is the hallmark of a method that is unstable. Some methods have restrictions on
the size of the timestep that result in a stable methods as well.

4.2 First-order advection in 1-d and finite-differences

To get a flavor of the methods for advection, we will use a simple finite-difference
discretization—here, the domain is divided into a sequence of points where we store
the solution. We will solve Eq. 4.1 numerically by discretizing the solution at these
points. The index i denotes the point’s location, and ai denotes the discrete value of
a(x) in zone i. The data in each zone can be initialized as ai = a(xi). Figure 4.2 shows
the grid.

We also need to discretize in time. We denote the time-level of the solution with a
superscript, so an

i = a(xi, tn). For a fixed ∆t, time level n corresponds to a time of
t = n∆t.

4.2—First-order advection in 1-d and finite-differences 39

−1 0 1 i− 1 i i+ 1 N − 2 N − 1 N

ai

∆x

Figure 4.2: A simple finite-difference grid. The solution is stored at each of the labeled
points. The dotted lines show the ghost points used to extend our grid past the physical
boundaries to accommodate boundary conditions. Note that if we are periodic, then
points 0 and N − 1 are at the same physical point in space, so we would only need to
update one of them.

A simple first-order accurate discretization is:

an+1
i − an

i
∆t

= −u
an

i − an
i−1

∆x
(4.2)

This is an explicit method, since the new solution, an+1
i , depends only on information

at the old time level, n.

Finally, we also need to specify a boundary condition for this. Our choice of spatial
derivative is one-sided—it uses information from the zone to the left of the zone we
are updating. This is because information is flowing from left to right in this problem
(u > 0). This choice of the derivative is called upwinding—this choice of derivative
results in a stable method. Notice that if we use Eq. 4.2 to update the data in the
first zone inside the boundary, we need data to the left of this zone—outside of the
domain. This means that we need a single ghost point to implement the boundary
conditions for our method. The presence of the ghost points allow us to use the same
update equation (e.g. Eq. 4.2) for all zones in the domain.

The last piece of information needed to update the solution is the timestep, ∆t. It can
be shown that for the solution to be stable, the timestep must be less than the time it
takes information to propagate across a single zone. That is:

∆t ≤ ∆x
u

. (4.3)

This is called the Courant-Friedrichs-Lewy or CFL condition. A dimensionless quantity
called the CFL number is defined as

C = ∆tu
∆x

(4.4)

Stability requires C ≤ 1. We traditionally write the timestep as

∆t = C∆x
u

(4.5)

40 Chapter 4. Advection Basics

and specify C as part of the problem (a typical value may be C = 0.7).

Exercise 4.2

Show analytically that when you use C = 1 in the first-order differenced
advection equation (Eq. 4.2) that you advect the profile exactly, without
any numerical error.

Keep in mind that, in general, we will be solving a non-linear system of equations,
so it is not possible to run with C = 1, since u (and therefore C) will change from
zone to zone. Instead, one looks at the most restrictive timestep over all the zones
and uses that for the entire system.

Exercise 4.3

Write a code to solve the 1-d linear advection equation using the dis-
cretization of Eq. 4.2 on the domain [0, 1] with u = 1 and periodic bound-
ary conditions. For initial conditions, try both a Gaussian profile and a
top-hat:

a =

0 if x < 1/3
1 if 1/3 ≤ x < 2/3
0 if 2/3 ≤ x

(4.6)

Note: For a general treatment of boundary conditions, you would
initialize the ghost points to their corresponding periodic data and apply
the difference equations to zones 0, . . . , N− 1. However, for periodic BCs
on this grid, points 0 and N− 1 are identical, so you could do the update
in this special case on points 1, . . . , N − 1 without the need for ghost
points and then set a0 = aN−1 after the update.

Run you program for one or more periods (one period is T = 1/u) with
several different CFL numbers and notice that there is substantial numer-
ical dissipation (see Figure 4.3).

This method is first-order accurate.

Ultimately we will want higher-order accurate methods. The most obvious change
from our initial discretization is to try a higher-order spatial derivative.

4.2—First-order advection in 1-d and finite-differences 41

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

a

exact
C= 0.1

C= 0.5

C= 0.9

Figure 4.3: Finite-difference solution to the first-order finite-difference upwind method
for advection, using 65 points and a variety of CFL numbers.
Ï hydro_examples: fdadvect.py

0.0 0.2 0.4 0.6 0.8 1.0
x

0.25

0.00

0.25

0.50

0.75

1.00

1.25

a

exact
C= 0.1

0.0 0.2 0.4 0.6 0.8 1.0
x

1.0

0.5

0.0

0.5

1.0

1.5

2.0

a

exact
C= 0.5

Figure 4.4: Finite-difference solution using the FTCS finite-difference method for ad-
vection using 65 points, modeling for only 1/10

th of a period. The panel of the left is
with C = 0.1 and the panel on the right is C = 0.5.
Ï hydro_examples: fdadvect.py

Exercise 4.4

You may think that using a centered-difference for the spatial derivative,
ax ∼ (ai+1− ai−1)/(2∆x) would be more accurate. This method is called
FTCS (forward-time, centered-space). Try this on the same test problems.

https://github.com/zingale/hydro_examples/blob/master/advection/fdadvect.py
https://github.com/zingale/hydro_examples/blob/master/advection/fdadvect.py

42 Chapter 4. Advection Basics

You will find that no matter what value of C you choose with the FTCS method,
the solution is unconditionally unstable (see Figure 4.4). If you continue to evolve the
equation with this method, you would find that the amplitude grows without bound.
There is something about that discretization that simply gets the physics wrong.

4.3 Stability

The classic method for understanding stability is to consider the growth of a single
Fourier mode in our discretization. That is, substitute in an

i = AneIiθ , where I =√
−1*, and θ represents a phase. A method is stable if |An+1/An| ≤ 1. FTCS appears

as:
an+1

i = an
i −
C
2
(an

i+1 − an
i−1) (4.7)

Examining a Fourier mode shows that:

An+1eIiθ = AneIiθ − C
2

(
AneI(i+1)θ − AneI(i−1)θ

)
(4.8)

An+1 = An − C
2

An
(

eIθ − e−Iθ
)

(4.9)

An+1 = An (1− IC sin θ) (4.10)

so the magnitude of the amplification is
∣∣∣∣

An+1

An

∣∣∣∣
2

= 1 + C2 sin2 θ (4.11)

We see that there is no value of C that can make the method stable (|An+1/An| > 1
always). Doing the same analysis for Eq. 4.2 would show that the upwind method is
stable for 0 ≤ C ≤ 1.

Exercise 4.5

Using the above stability analysis, considering the amplitude of a single
Fourier mode, show that the growth of a mode for the upwind method
(Eq. 4.2) is: ∣∣∣∣

An+1

An

∣∣∣∣
2

= 1− 2C(1− C)(1− cos θ) (4.12)

and stability requires 2C(1− C) ≥ 0 or 0 ≤ C ≤ 1.

It is important to note that this stability analysis only works for linear equations,
where the different Fourier modes are decoupled, nevertheless, we use its ideas for
nonlinear advection problems as well.

*our use of i and j as spatial indices presents an unfortunate clash of notation here, hence the use of
I for the imaginary unit

4.3—Stability 43

Truncation analysis can also help us understand stability. The idea here is to keep
the higher order terms in the Taylor series to understand how they modify the actual
equation you are trying to solve.

Exercise 4.6

To get an alternate feel for stability, we can ask what the terms left out by
truncation look like. That is, we can begin with the discretized equation:

an+1
i − an

i = −u∆t
∆x

(an
i − an

i−1) (4.13)

and replace an+1
i with a Taylor expansion in time, and replace an

i−1 with
a Taylor expansion in space, keeping terms to O(∆t3) and O(∆x3). Re-
placing ∂a/∂t with −u∂a/∂x in the higher-order terms, show that our
difference equation more closely corresponds to

at + uax =
u∆x

2

(
1− ∆tu

∆x

)
∂2a
∂x2 (4.14)

=
u∆x

2
(1− C) ∂2a

∂x2 (4.15)

Notice that the righthand side of Eq. 4.14 looks like a diffusion term, however, if
C > 1, then the coefficient of the diffusion is negative—this is unphysical. This
means that the diffusion would act to take smooth features and make them more
strongly peaked—the opposite of physical diffusion.

For FTCS, a similar truncation analysis would show that the diffusion term is always
negative.

4.3.1 Domain of dependence

Another important view of our numerical difference scheme is to look at the domain
of dependence. Figure 4.5 illustrates this for the updated point an+1

i (shown at the top
of center of the space-time diagram). The numerical domain of dependence shows
the points that can influence the updated value of ai using our difference method.
For the upwind scheme, we see that this is a triangle that includes an

i−1 and an
i . The

physical domain of dependence is shown as the orange triangle—this is formed by
tracing backwards in time from an+1

i along a characteristic, reaching out to the point
xi − C∆x = xi − u∆t over ∆t.

Any stable numerical method must have a numerical domain of dependence that in-
cludes the physical domain of dependence. If it does not, then the update to the so-
lution simply does not see the points that contribute to the solution over the timestep
∆x. Notice that this is a necessary, but not sufficient condition for stability. FTCS has

44 Chapter 4. Advection Basics

x

xixi− 1 xi+ 1xi −C∆x

t

tn+ 1

tn

upwind

ani− 1 ani ani+ 1

an+ 1
i

x

xixi− 1 xi+ 1xi −C∆x

t

tn+ 1

tn

downwind

ani− 1 ani ani+ 1

an+ 1
i

x

xixi− 1 xi+ 1xi −C∆x

t

tn+ 1

tn

FTCS

ani− 1 ani ani+ 1

an+ 1
i

Figure 4.5: Space-time diagrams showing the numerical domain of dependence (blue
region) for three different difference methods. Also show is the physical domain of
dependence—that formed by tracing backwards from an+1

i along a characteristic.

a domain of dependence that includes the physical domain of dependence, but it is
not stable.

4.4—Implicit-in-time 45

4.4 Implicit-in-time

An alternate approach to time-discretization is to do an implicit discretization. Here
our upwind method would appear as:

an+1
i − an

i
∆t

= −u
an+1

i − an+1
i−1

∆x
(4.16)

The only change here is that the righthand side is evaluated at the new timelevel,
n + 1. We can write this as a linear system with coupled equations:

−Can+1
i−1 + (1 + C)an+1

i = an
i (4.17)

If we use periodic boundary conditions, then point 0 and N − 1 are identical, so we
only need to update one of these. Taking an+1

0 = an+1
N−1, our system in matrix form

appears as:

1 + C −C
−C 1 + C

−C 1 + C
−C 1 + C

.

−C 1 + C
−C 1 + C

an+1
1

an+1
2

an+1
3

an+1
4
...

an+1
N−2

an+1
N−1

=

an
1

an
2

an
3

an
4
...

an
N−2

an
N−1

(4.18)
This requires a matrix solve—this makes implicit methods generally more expensive
than explicit methods. However, stability analysis would show that this implicit dis-
cretization is stable for any choice of C. (But one must not confuse stability with
accuracy—the most accurate solutions with this method will still have a small C).
Also note that the form of the matrix will change depending on the choice of bound-
ary conditions. Figure 4.6 shows the result of solving this implicit system.

Exercise 4.7

Code up the implicit advection scheme, but using outflow instead of peri-
odic boundary conditions. This will change the form of the matrix. You
can use the code from Figure 4.6 as a starting point.

46 Chapter 4. Advection Basics

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

a

exact
C= 0.5

C= 1.0

C= 10.0

Figure 4.6: Finite-difference solution to the implicit first-order finite-difference upwind
method for advection, using 65 points and a variety of CFL numbers.
Ï hydro_examples: fdadvect_implicit.py

4.5 Eulerian vs. Lagrangian frames

It is useful to think about how our advected quantity, a(x, t), changes in time. The
full time derivative is:

da(x, t)
dt

=
∂a
∂t

+
∂a
∂x

dx
dt

(4.19)

So the value of this derivative depends on the path, x(t), that we choose to follow.

Consider an observer who is stationary. They will watch the flow move past them,
so dx/dt = 0, and da/dt = ∂a/∂t. This fixed frame is called Eulerian frame.

Instead imagine an observer who moves with the flow, at the velocity u. This way
they keep pace with an individual feature in the flow and track the changes it ex-
periences. In this case, dx/dt = u, and our derivative, commonly written as D/Dt
is:

D
Dt

=
∂

∂t
+ u

∂

∂x
(4.20)

This is the Lagrangian frame, and the derivative, D/Dt is called the Lagrangian deriva-
tive, material derivative, convective derivative, or advective derivative†.

Our linear advection equation can be written simply as Da/Dt = 0. We’ve been
solving the equations in the Eulerian frame—our grid is fixed and the fluid moves

†and there are actually many more names...

https://github.com/zingale/hydro_examples/blob/master/advection/fdadvect_implicit.py

4.6—Errors and convergence rate 47

through it. For hydrodynamics, it will be useful conceptually to consider the La-
grangian frame to understand how the fluid properties change in a particular fluid
element over time.

4.6 Errors and convergence rate

For the advection problem (with u > 0), the analytic solution is to simply propagate
the initial profile to the right. This means that with periodic boundary conditions,
after advecting for one period, our numerical solution should be identical to the
initial conditions. Any differences are our numerical error. We can quantify the error
by taking the norm of error‡ as:

ϵabs = ∥afinal − ainit∥2 ≡
[

1
N

N

∑
i=1

(afinal
i − ainit

i)2

]1/2

(4.21)

It is sometimes useful to compare to the norm of the original solution to get a measure
of the relative error:

ϵrel ≡ ∥a
final − ainit∥2

∥ainit∥2
(4.22)

Note that for the absolute norm, it is important in these definitions to normalize by
the number of zones, N, otherwise our error will be resolution-dependent. For the
relative norm, since we scale by a norm on the same grid, this normalization will
cancel.

‡see § 1.2.4 for the definition of the norms

Chapter5
Second- (and Higher-) Order
Advection

5.1 Advection and the finite-volume method

In these notes, we will typically use a finite-volume discretization. Here we explore
this method for the advection equation. First we rewrite the advection equation in
conservation form:

at + [f (a)]x = 0 (5.1)

where f (a) = ua is the flux of the quantity a. In conservation form, the time deriva-
tive of a quantity is related to the divergence of its flux.

Recall that in the finite-volume discretization, ⟨a⟩i represents the average of a(x, t)
over the interval xi−1/2 to xi+1/2, where the half-integer indexes denote the zone edges
(i.e. xi−1/2 = xi − ∆x/2). Figure 5.1 shows an example of such a grid with 2 ghost
cells at each end. (For simplicity of notation, we drop the ⟨⟩ going forward). To
discretize Eq. 5.1, we integrate it over a zone, from xi−1/2 to xi+1/2, normalizing by the
zone width, ∆x:

1
∆x

∫ xi+1/2

xi−1/2

at dx = − 1
∆x

∫ xi+1/2

xi−1/2

∂

∂x
f (a) dx (5.2)

∂

∂t
ai = −

1
∆x

{
[f (a)]i+1/2 − [f (a)]i−1/2

}
(5.3)

This is an evolution equation for the zone-average of a, and shows that it updates in
time based on the fluxes through the boundary of the zone.

We now have a choice on how to proceed with the time-discretization:

1. We can discretize ∂ai/∂t directly as (an+1
i − an

i)/∆t. Then to achieve second-
order accuracy, we need to evaluate the righthand side of Eq. 5.3 at the midpoint

git version: ae2370a3e0d5 . . . 49

50 Chapter 5. Second- (and Higher-) Order Advection

ii− 1 i+ 1lolo− 1lo− 2 hi hi + 1 hi + 2i− 1/2 i+ 1/2

〈a〉i

∆x

Figure 5.1: A finite-volume grid running from lo, . . . , hi, with two ghost cells at each
end.

in time (n + 1/2). This gives rise to a predictor-corrector method (as described
in [24]. Sometimes this is called a characteristic tracing method (a name which
will be more clear when we discuss the Euler equations).

2. We can recognize that with the spatial discretization done, our PDE has now
become an ODE, and we can use standard ODE methods (like Runge-Kutta) to
integrate the system in time. This is a method-of-lines integration.

We’ll look at both of these in the next sections.

5.2 Second-order predictor-corrector scheme

We discretize Eq. 5.3 in time by evaluating the righthand side at the midpoint in
time—this gives a centered-difference in time, which is second-order accurate:

an+1
i − an

i
∆t

= −
[f (a)]n+

1/2

i+1/2
− [f (a)]n+

1/2

i−1/2

∆x
(5.4)

To evaluate the fluxes at the half-time, we need the state at the half-time, that is, we
do :

[f (a)]n+
1/2

i+1/2
= f (an+1/2

i+1/2
) . (5.5)

We construct a second-order accurate approximation to an+1/2

i+1/2
by Taylor expanding

the data in the cell to the interface. The construction of the interface state at the
midpoint in time is the prediction and the conservative update in the correction here.

Notice that for each interface, there are two possible interface states we can construct—
one using the data to the left of the interface (which we will denote with a “L” sub-
script) and the other using the data to the right of the interface (denoted with an “R”

5.2—Second-order predictor-corrector scheme 51

i i+ 1i+ 1/2

a
n+1/2
i+1/2,Ra

n+1/2
i+1/2,L

ai ai+1

Figure 5.2: The left and right interface state at the i + 1/2 interface. Here, the left state,
an+1/2

i+1/2,L, was predicted to the interface from the zone to the left of the interface, using

ai, and the right state, an+1/2

i+1/2,R, was predicted to the interface from the zone to the right,
using ai+1.

subscript)—see Figure 5.2. These states are:

an+1/2

i+1/2,L = an
i +

∆x
2

∂a
∂x

∣∣∣∣
i
+

∆t
2

∂a
∂t

∣∣∣∣
i
+O(∆x2) +O(∆t2)

= an
i +

∆x
2

∂a
∂x

∣∣∣∣
i
+

∆t
2

(
−u

∂a
∂x

∣∣∣∣
i

)
+ . . .

= an
i +

∆x
2

(
1− ∆t

∆x
u
)

∂a
∂x

∣∣∣∣
i
+ . . . (5.6)

an+1/2

i+1/2,R = an
i+1 −

∆x
2

∂a
∂x

∣∣∣∣
i+1

+
∆t
2

∂a
∂t

∣∣∣∣
i+1

+O(∆x2) +O(∆t2)

= an
i+1 −

∆x
2

∂a
∂x

∣∣∣∣
i+1

+
∆t
2

(
−u

∂a
∂x

∣∣∣∣
i+1

)
+ . . .

= an
i+1 −

∆x
2

(
1 +

∆t
∆x

u
)

∂a
∂x

∣∣∣∣
i+1

+ . . . (5.7)

A suitable estimate is needed for the slope of a that appears in these expressions (as
∂a/∂x). We can approximate this simply as

∂a
∂x

∣∣∣∣
i
=

ai+1 − ai−1

2∆x
(5.8)

We can think of this method as reconstructing the function form of the data from the
cell-average data in each cell using a piecewise linear polynomial. Don’t be worried
that this looks like FTCS—we’ll do upwinding next.

We now have two states, an+1/2

i+1/2,L and an+1/2

i+1/2,R separated by an interface—this is called
the Riemann problem. The solution to this will depend on the equation being solved,
and results in a single state at the interface:

an+1/2

i+1/2
= R(an+1/2

i+1/2,L, an+1/2

i+1/2,R) (5.9)

52 Chapter 5. Second- (and Higher-) Order Advection

lo− 2 lo− 1 lo lo + 1lo− 1/2

a
n+1/2
lo+1/2,L

a
n+1/2
lo+1/2,R

Figure 5.3: Reconstruction near the boundary, showing the need for two ghostcells.
Here we see the left and right state at the left physical boundary of the domain (marked
as lo− 1/2). The gray dotted lines are the piecewise constant cell averages and the red
lines are the reconstructed slopes. Note that we need the slope in lo − 1 to get the
left interface state at lo− 1/2, and that slope in turn needed the data in zone lo− 2 to
construct a centered-difference.

In our case, the advection equation simply propagates the state to the right (for
u > 0), so the solution to the Riemann problem is to take the left state (this is another
example of upwinding). That is we do:

R(an+1/2

i+1/2,L, an+1/2

i+1/2,R) =

an+1/2

i+1/2,L u > 0

an+1/2

i+1/2,R u < 0
(5.10)

To complete the update, we use this interface state to evaluate the flux and update
the advected quantity via Eq. 5.4 and 5.5.

Boundary conditions are implemented by filling the ghost cells outside each end
of the domain based on data in the interior. Note that at the very left edge of the
domain, the state an+1/2

lo−1/2
requires the construction of states on the left and right. The

left state at that interface, an+1/2

lo−1/2,L depends on the slope reconstructed in the lo− 1
ghost cell, ∂a/∂x|lo−1. This in turn is constructed using a limited center-difference
that will consider the value in the cell to the left, lo− 2. Therefore, we need two
ghost cells at each end of the domain for this method—figure 5.3 illustrates this.
Higher-order limiters may require even more ghost cells.

Exercise 5.1

Write a second-order solver for the linear advection equation. To mimic
a real hydrodynamics code, your code should have routines for finding
initializing the state, filling boundary conditions, computing the timestep,
constructing the interface states, solving the Riemann problem, and doing
the update. The problem flow should look like:

• set initial conditions
• main evolution loop—loop until final time reached

– fill boundary conditions

5.2—Second-order predictor-corrector scheme 53

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0
a

exact
unlimited
minmod limiter

Figure 5.4: Second-order finite volume advection showing the result of advecting
a tophat profile through five periods with both unlimited and limited slopes. This
calculation used 64 zones and C = 0.7.
Ï hydro_examples: advection.py

– get timestep (Eq. 4.5)
– compute interface states (Eqs. 5.6 and 5.7)
– solve Riemann problem at all interfaces (Eq. 5.10)
– do conservative update (Eqs. 5.4 and 5.5)

Use both the top-hat and Gaussian initial conditions and periodic bound-
ary conditions and compare to the first-order method. See Figure 5.4.

5.2.1 Limiting

The second-order method likely showed some oscillations in the solution, especially
for the top-hat initial conditions. Godunov’s theorem says that any monotonic linear
method for advection is first-order accurate (see, e.g., [44]). In this context, monotonic
means that no new minima or maxima are introduced. The converse is true too,
which suggests that in order to have a second-order accurate method for this linear
equation, the algorithm itself must be nonlinear.

https://github.com/zingale/hydro_examples/blob/master/advection/advection.py

54 Chapter 5. Second- (and Higher-) Order Advection

Exercise 5.2

To remove the oscillations in practice, we limit the slopes to ensure that
no new minima or maxima are introduced during the advection process.
There are many choices for limited slopes. A popular one is the minmod
limiter. Here, we construct the slopes in the interface states as:

∂a
∂x

∣∣∣∣
i
= minmod

(
ai − ai−1

∆x
,

ai+1 − ai

∆x

)
(5.11)

instead of Eq. 5.8. with

minmod(a, b) =

a if |a| < |b| and a · b > 0
b if |b| < |a| and a · b > 0
0 otherwise

(5.12)

Use this slope in your second-order advection code and notice that the
oscillations go away—see Figure 5.4.

We can get a feel for what happens with and without limiting pictorially. Figures 5.5
and 5.6 show the evolution of an initial discontinuity with and without limiting.
Without limiting, we see an overshoot behind the discontinuity and an undershoot
ahead of it—these develop after only a single step. With each additional step, the
overshoots and undershoots move further away from the discontinuity. In contrast,
the case with limiting shows no over- or undershoots around the initial discontinuity.
By the end of the evolution, we see that the profile is much narrower in the limiting
case than in the case without limiting.

See the text by LeVeque [46] for alternate choices of limiters. Note: most limiters will
have some sort of test on the product of a left-sided and right-sided difference (a · b
above)—this is < 0 at an extremum, which is precisely where we want to limit.

A slightly more complex limiter is the MC limiter (monotonized central difference).
First we define an extrema test,

ξ = (ai+1 − ai) · (ai − ai−1) (5.13)

Then the limited difference is

∂a
∂x

∣∣∣∣
i
=

{
min

[
|ai+1−ai−1|

2∆x , 2 |ai+1−ai |
∆x , 2 |ai−ai−1|

∆x

]
sign(ai+1 − ai−1) ξ > 0

0 otherwise
(5.14)

Note that a slightly different form of this limiter is presented in [46], where all quan-
tities are in a minmod, which appears to limit a bit less. This is second-order accurate
for smooth flows.

The main goal of a limiter is to reduce the slope near extrema. Figure 5.7 shows a
finite-volume grid with the original data, cell-centered slopes, and MC limited slopes.

5.2—Second-order predictor-corrector scheme 55

ii− 1 i+ 1i− 2 i+ 2

ii− 1 i+ 1i− 2 i+ 2

ii− 1 i+ 1i− 2 i+ 2

ii− 1 i+ 1i− 2 i+ 2

ii− 1 i+ 1i− 2 i+ 2

ii− 1 i+ 1i− 2 i+ 2

Figure 5.5: Initially discontinuous data evolved for several steps with no limiting. No-
tice that there are overshoots and undershoots surrounding the discontinuity.

Note that near the strong gradients is where the limiting kicks in. The different
limiters are all constructed by enforcing a condition requiring the method to be total
variation diminishing, or TVD. More details on TVD limiters can be found in [46, 82].

A popular extension of the MC limiter is the 4th-order MC limiter, which is more
accurate in smooth flows (this is shown in [23], Eqs. 2.5 and 2.6; and [24], Eq. 191).

56 Chapter 5. Second- (and Higher-) Order Advection

ii− 1 i+ 1i− 2 i+ 2

ii− 1 i+ 1i− 2 i+ 2

ii− 1 i+ 1i− 2 i+ 2

ii− 1 i+ 1i− 2 i+ 2

ii− 1 i+ 1i− 2 i+ 2

ii− 1 i+ 1i− 2 i+ 2

Figure 5.6: Initially discontinuous data evolved for several steps with limiting. Note
that unlike the sequence without limiting (Figure 5.5), the discontinuity remains
sharper with limiting and there are no over- or undershoots.

Exercise 5.3

Show analytically that if you fully limit the slopes (i.e. set ∂a/∂x|i = 0,
that the second-order method reduces to precisely our first-order finite-

5.2—Second-order predictor-corrector scheme 57

ii− 1 i+ 1i− 2 i+ 2

Figure 5.7: A finite-volume grid showing the cell averages (gray, dotted, horizontal
lines), unlimited center-difference slopes (gray, solid) and MC limited slopes (red).
Note that in zones i and i + 1, the slopes are limited slightly, so as not to overshoot
or undershoot the neighboring cell value. Cell i− 1 is not limited at all, whereas cells
i− 2, and i + 2 are fully limited—the slope is set to 0—these are extrema.

difference discretization, Eq. 4.2.

It is common to express the slope simply as the change in the state variable:

∆ai =
∂a
∂x

∣∣∣∣
i
∆x (5.15)

and to indicate the limited slope as ∆ai.

5.2.2 Reconstruct-evolve-average

Another way to think about these methods is as a reconstruction, evolve, and average
(R-E-A) process (see Figure 5.8).

We can write the conservative update as:

an+1
i = an

i +
∆t
∆x

(uan+1/2

i−1/2
− uan+1/2

i+1/2
) (5.16)

= an
i + C(an+1/2

i−1/2
− an+1/2

i+1/2
) (5.17)

If we take u > 0, then the Riemann problem will always choose the left state, so we
can write this as:

an+1
i = an

i + C
[(

an
i−1 +

1
2
(1− C)∆ai−1

)

︸ ︷︷ ︸
ai−1/2,L

−
(

an
i +

1
2
(1− C)∆ai

)

︸ ︷︷ ︸
ai+1/2,L

]
(5.18)

If we instead look at this via the R-E-A procedure, we write the reconstructed a in
each zone in the form of a piecewise linear polynomial

ai(x) = ai +
∆ai

∆x
(x− xi) (5.19)

58 Chapter 5. Second- (and Higher-) Order Advection

Consider zone i. If we are advecting with a CFL number C, then that means that the
fraction C of the zone immediately to the left of the i− 1/2 interface will advect into
zone i over the timestep. And only the fraction 1− C in zone i immediately to the
right of the interface will stay in that zone. This is indicated by the shaded regions
in Figure 5.8.

The average of the quantity a from zone i− 1 that will advect into zone i is

I< =
1
C∆x

∫ xi−1/2

xi−1/2−C∆x
ai−1(x)dx (5.20)

=
1
C∆x

∫ xi−1/2

xi−1/2−C∆x

[
ai−1 +

∆ai−1

∆x
(x− xi−1)

]
dx (5.21)

= ai−1 +
1
2

∆ai−1(1− C) (5.22)

And the average of the quantity a in zone i that will remain in zone i is

I> =
1

(1− C)∆x

∫ xi−1/2+(1−C)∆x

xi−1/2

ai(x)dx (5.23)

=
1

(1− C)∆x

∫ xi−1/2+(1−C)∆x

xi−1/2

[
ai +

∆ai

∆x
(x− xi)

]
dx (5.24)

= ai −
1
2

∆aiC (5.25)

The final part of the R-E-A procedure is to average the over the advected profiles in
the new cell. The weighted average of the amount brought in from the left of the
interface and that that remains in the cell is

an+1
i = CI< + (1− C)I> (5.26)

= C
[

an
i−1 +

1
2

∆ai−1(1− C)
]
+ (1− C)

[
an

i −
1
2

∆aiC
]

(5.27)

= an
i + C

[
an

i−1 +
1
2
(1− C)∆ai−1

]
− C

[
an

i +
1
2
(1− C)∆ai

]
(5.28)

This is identical to Eq. 5.18. This demonstrates that the R-E-A procedure is equivalent
to our reconstruction, prediction of the interface states, solving the Riemann problem,
and doing the conservative flux update.

Exercise 5.4

Run the first-order solver for several different values of ∆x, each a factor
of 2 smaller than the previous. Compute ϵ for each resolution and observe
that it converges in a first-order fashion (i.e. ϵ decreases by 2 when we
decrease ∆x by a factor of 2).

5.2—Second-order predictor-corrector scheme 59

i− 2 i− 1 i i+ 1 i+ 2

i− 2 i− 1 i i+ 1 i+ 2

i− 2 i− 1 i i+ 1 i+ 2

i− 2 i− 1 i i+ 1 i+ 2

i− 2 i− 1 i i+ 1 i+ 2

Figure 5.8: Reconstruct-Evolve-Average. The top panel shows the original cell-average
data. The second panel shows the (limited) piecewise linear reconstruction of the data.
Assuming a CFL number of 0.6 and advection to the right, the shaded regions in the
third panel show the data that will wind up in cell i after advecting for a single step.
The fourth panel shows the piecewise-linear data advected to the right by 0.6 of a cell-
width (corresponding to a CFL of 0.6). The final panel shows the new averages of the
data, constructed by averaging the advected piecewise linear data in each cell.

60 Chapter 5. Second- (and Higher-) Order Advection

102

N

10−4

10−3

10−2

10−1

‖a
fi
n
a
l
−
a

in
it
‖ 2

O(∆x2)

unlimited center
MC
minmod

Figure 5.9: Convergence for the second-order finite-volume method with no limiting,
MC, and minmod limiting advecting a Gaussian initial profile with C = 0.8 for 5

periods.
Ï hydro_examples: advection.py

Do the same with the second-order solver and observe that it converges
as second-order. However: you may find less than second-order if your
initial conditions have discontinuities and you are limiting. Figure 5.9
shows the convergence of the method with no limiting, MC, and minmod
limiting, C = 0.8, and a Gaussian initial condition for 5 periods.

As seen in figure 5.9, the choice of limiters can have a great effect on the accuracy.
Figure 5.10 shows the Gaussian and tophat profiles with several different limiters.

5.3 Method of lines approach

In the above constructions, we computed a time-centered flux by predicting the in-
terface state to the half-time (by Taylor-expanding in time through ∆t/2). Instead,
we can recognize that with the spatial discretization done in Eq. ??, we are left with
an ordinary differential equation in time that can then be solved using standard ODE
techniques.

Substituting in the flux as f (a) = ua, we have the ODE:

∂ai

∂t
= −uai+1/2 − uai−1/2

∆x
(5.29)

https://github.com/zingale/hydro_examples/blob/master/advection/advection.py

5.3—Method of lines approach 61

0.0 0.2 0.4 0.6 0.8 1.0
1.0

1.2

1.4

1.6

1.8

2.0
piecewise constant

0.0 0.2 0.4 0.6 0.8 1.0
1.0

1.2

1.4

1.6

1.8

2.0
centered (unlimited)

0.0 0.2 0.4 0.6 0.8 1.0
1.0

1.2

1.4

1.6

1.8

2.0
minmod limiter

0.0 0.2 0.4 0.6 0.8 1.0
1.0

1.2

1.4

1.6

1.8

2.0
MC limiter

0.0 0.2 0.4 0.6 0.8 1.0
1.0

1.2

1.4

1.6

1.8

2.0
superbee limiter

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
piecewise constant

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

centered (unlimited)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
minmod limiter

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
MC limiter

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
superbee limiter

Figure 5.10: The effect of different limiters on the evolution of a Gaussian initial profile
(top) and a tophat initial profile (bottom), using C = 0.8 and 5 periods.
Ï hydro_examples: advection.py

Note that there is no time-level indicated on the righthand side. We find the interface
values of a by interpolating in space only. For a second-order accurate method, we
can use a piecewise linear reconstruction (see Figure 5.11), and evaluate the interface

https://github.com/zingale/hydro_examples/blob/master/advection/advection.py

62 Chapter 5. Second- (and Higher-) Order Advection

i− 1 i i+ 1i+ 1/2

ai+1/2,L
ai+1/2,R

Figure 5.11: Piecewise linear reconstruction of the zones showing the interface states
used with the method of lines approach.

states as simply the point on the reconstructed line on the interface, e.g.,

ai+1/2,L = ai +
1
2

∆ai (5.30)

ai+1/2,R = ai+1 −
1
2

∆ai+1 (5.31)

The same limiting ideas discussed above apply here. As usual, we resolve the left-
right degeneracy on the interface by solving the Riemann problem:

ai+1/2,j = R(ai+1/2,j,L, ai+1/2,j,R) (5.32)

Once we have this interface state, we can integrate the ODE. A Runge-Kutta method
works fine here (it should be atleast second-order to match the spatial accuracy).

5.4 Multi-dimensional advection

The two-dimensional linear advection equation is:

at + uax + vay = 0 (5.33)

where u is the velocity in the x-direction and v is the velocity in the y-direction.
We denote the average of a(x, y, t) in a zone i, j as ai,j. Here, i is the index in the
x-direction and j is the index in the y-direction. A 2-d grid is shown in Figure 5.12.
Just as in the one-dimensional case, we will extend the domain with a perimeter of
ghost cells to set the boundary conditions.

To derive the finite-volume form of the update, we start by writing this in conserva-
tive form. Since u and v are constant, we can move them inside the divergences:

at + (ua)x + (va)y = 0 (5.34)

This is the form we will integrate over zones. As before, we will define the average
of a in a zone by integrating it over the volume:

ai,j =
1

∆x∆y

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

a(x, y, t) dx dy (5.35)

5.4—Multi-dimensional advection 63

ai,j ai+1,j

ai,j+1

a
n

+
1/

2

i+
1/

2,j,L

a
n

+
1/

2

i+
1/

2,j,R

a
n+1/2
i,j+1/2,L

a
n+1/2
i,j+1/2,R

i− 1 i i+ 1

j − 1

j

j + 1

Figure 5.12: A simple 2-d grid with the zone-centered indexes. The ×s mark the left
and right interface states at the upper edge of the i, j zone in each coordinate direction.
For a finite-volume discretization, ai,j represents the average of a(x, y) over the zone.

Integrating Eq. 5.34 over x and y, we have:

1
∆x∆y

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

at dx dy =− 1
∆x∆y

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

(ua)x dx dy

− 1
∆x∆y

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

(va)y dx dy (5.36)

or using the divergence theorem,

∂ai,j

∂t
=− 1

∆x∆y

∫ yj+1/2

yj−1/2

{
(ua)i+1/2,j − (ua)i−1/2,j

}
dy

− 1
∆x∆y

∫ xi+1/2

xi−1/2

{
(va)i,j+1/2 − (va)i,j−1/2

}
dx (5.37)

Now we integrate over time—the left side of our expression becomes just the differ-

64 Chapter 5. Second- (and Higher-) Order Advection

ence between the new and old state.

an+1
i,j − an

i,j =−
1

∆x∆y

∫ tn+1

tn

∫ yj+1/2

yj−1/2

{
(ua)i+1/2,j − (ua)i−1/2,j

}
dydt

− 1
∆x∆y

∫ tn+1

tn

∫ xi+1/2

xi−1/2

{
(va)i,j+1/2 − (va)i,j−1/2

}
dxdt (5.38)

We define the flux through the interface as the average over the face of that interface
and time:

• x-face:

⟨(ua)i+1/2,j⟩(t) =
1

∆y∆t

∫ tn+1

tn

∫ yj+1/2

yj−1/2

(ua)i+1/2,j dydt (5.39)

• y-face

⟨(va)i,j+1/2⟩(t) =
1

∆x∆t

∫ tn+1

tn

∫ xi+1/2

xi−1/2

(va)i,j+1/2 dxdt (5.40)

where ⟨.⟩(t) denotes the time-average over the face. For a second-order accurate
method in time, we replace the average in time with the flux at the midpoint in time
and the average over the face with the flux at the center of the face:

⟨(ua)i+1/2,j⟩(t) ≈ (ua)n+1/2

i+1/2,j (5.41)

Then we have:

an+1
i,j = an

i,j − ∆t

 (ua)n+1/2

i+1/2,j − (ua)n+1/2

i−1/2,j

∆x
+

(va)n+1/2

i,j+1/2
− (va)n+1/2

i,j−1/2

∆y

 (5.42)

For the advection problem, since u and v are constant, we need to find the inter-
face states of a alone. There are two methods for computing these interface states,
an+1/2

i±1/2,j on x-interfaces and an+1/2

i,j±1/2
on y-interfaces: dimensionally split and unsplit. Di-

mensionally split methods are easier to code, since each dimension is operated on
independent of the others, so you can simply call a one-dimensional method for each
direction. Unsplit methods, however, are more accurate and less susceptible to grid
effects.

5.4.1 Dimensionally split

In a split method, we update the state in each coordinate direction independently.
This is simple and a straightforward way to use one-dimensional methods in multi-
d. To be second-order accurate in time, we do Strang splitting [77], where we alternate

5.4—Multi-dimensional advection 65

the order of the dimensional updates each timestep. An update through ∆t consists
of x and y sweeps and appears as:

a⋆i,j − an
i,j

∆t
= −

uan+1/2

i+1/2,j − uan+1/2

i−1/2,j

∆x
(5.43)

an+1
i,j − a⋆i,j

∆t
= −

va⋆,n+1/2

i,j+1/2
− va⋆,n+1/2

i,j−1/2

∆y
(5.44)

Here, Eq. 5.43 is the update in the x-direction. In constructing the interface states,
an+1/2

i+1/2,j and an+1/2

i−1/2,j, we do the exact same procedure as the one-dimensional case,
constructing the left and right states at each interface and then solving the same
Riemann problem to find the unique state on the interface. Each dimensional sweep
is done without knowledge of the other dimensions. For example, in the x-update,
we are solving:

at + uax = 0 (5.45)

and in the y-update, we are solving:

at + vay = 0 (5.46)

The construction of the interface states largely mimics the one-dimensional case
(Eq. 5.6 and 5.7). For example, the an+1/2

i+1/2,j,L state is:

an+1/2

i+1/2,j,L = an
i,j +

∆x
2

∂a
∂x

∣∣∣∣
i,j
+

∆t
2

∂a
∂t

∣∣∣∣
i,j
+O(∆x2) +O(∆t2)

= an
i,j +

∆x
2

∂a
∂x

∣∣∣∣
i,j
+

∆t
2

(
−u

∂a
∂x

∣∣∣∣
i,j

)
+ . . .

= an
i,j +

∆x
2

(
1− ∆t

∆x
u
)

∂a
∂x

∣∣∣∣
i,j
+ . . . (5.47)

Notice that when substituting for ∂a/∂t, we use the one-dimensional split version
of the advection equation (Eq. 5.45) instead of the full multi-dimensional equation.
There are no y-direction terms that come into play in the split method when consid-
ering the x-direction.

The x-update (Eq. 5.43) updates the state only accounting for the x-fluxes—we denote
this intermediate state with the ‘⋆’ superscript. For the y-update, we construct our
interface states in the analogous way as in the x-direction, but begin with the ‘⋆’ state
instead of the old-time state. In this fashion, the y-update ‘sees’ the result of the
x-update and couples things together.

To achieve second-order accuracy in time, it is necessary to alternate the directions of
the sweeps each timestep, i.e., x-y then y-x. Furthermore, this pair of sweeps should
use the same timestep, ∆t.

66 Chapter 5. Second- (and Higher-) Order Advection

5.4.2 Unsplit multi-dimensional advection

The unsplit case differs from the dimensionally split case in two ways: (1) in pre-
dicting the interface states, we use knowledge of the flow in the transverse direction,
and (2), only a single conservative update is done per timestep, with all directions
updating simultaneously. See [24] for more details. This idea is sometimes called the
“corner transport upwind” or CTU method.

The construction of the an+1/2

i+1/2,j,L interface state appears as

an+1/2

i+1/2,j,L = an
i,j +

∆x
2

∂a
∂x

∣∣∣∣
i,j
+

∆t
2

∂a
∂t

∣∣∣∣
i,j
+O(∆x2) +O(∆t2)

= an
i,j +

∆x
2

∂a
∂x

∣∣∣∣
i,j
+

∆t
2

(
−u

∂a
∂x

∣∣∣∣
i,j
− v

∂a
∂y

∣∣∣∣
i,j

)
+ . . .

= an
i,j +

∆x
2

(
1− ∆t

∆x
u
)

∂a
∂x

∣∣∣∣
i,j︸ ︷︷ ︸

ân+1/2

i+1/2,j,L

−∆t
2

v
∂a
∂y

∣∣∣∣
i,j︸ ︷︷ ︸

“transverse flux difference′′

+ . . . (5.48)

The main difference between the split and unsplit interface states is the explicitly ap-
pearance of the “transverse flux difference” in the unsplit interface state. We rewrite
this as:

an+1/2

i+1/2,j,L = ân+1/2

i+1/2,j,L −
∆t
2

v
∂a
∂y

∣∣∣∣
i,j

(5.49)

Here, the ân+1/2

i+1/2,j,L term is just the normal prediction without considering the trans-
verse direction (e.g., Eq. 5.47). The basic update procedure is:

• Construct the normal predictor term, ân+1/2

i+1/2,j,L, in a fashion identical to the one-
dimensional and split methods. We compute these one-dimensional â’s at the
left and right every interface in both coordinate directions. Note that these
states are still one-dimensional, since we have not used any information from
the transverse direction in their computation.

• Solve a Riemann problem at each of these interfaces:

aT
i+1/2,j = R(ân+1/2

i+1/2,j,L, ân+1/2

i+1/2,j,R) (5.50)

aT
i,j+1/2 = R(ân+1/2

i,j+1/2,L, ân+1/2

i,j+1/2,R) (5.51)

(5.52)

These states are given the ‘T’ superscript since they are the states that are used
in computing the transverse flux difference.

• Correct the previously computed normal interface states (the â’s) with the trans-
verse flux difference:

an+1/2

i+1/2,j,L = ân+1/2

i+1/2,j,L −
∆t
2

v
aT

i,j+1/2
− aT

i,j−1/2

∆y
(5.53)

5.4—Multi-dimensional advection 67

Notice that the fluxes that are differenced for the left state are those that are
transverse, but to the left of the interface. Similarly, for the right state, it would
be those that are transverse, but to the right of the interface:

an+1/2

i+1/2,j,R = ân+1/2

i+1/2,j,R −
∆t
2

v
aT

i+1,j+1/2
− aT

i+1,j−1/2

∆y
(5.54)

A similar procedure happens at the y-interfaces.

Figure 5.13 illustrates the steps involved in the construction of the an+1/2

i+1/2,j,L state.

Once all of the full states (normal prediction + transverse flux difference) are com-
puted to the left and right of all the interfaces (x and y), we solve another Riemann
problem to find the final state on each interface.

an+1/2

i+1/2,j = R(an+1/2

i+1/2,j,L, an+1/2

i+1/2,j,R) (5.55)

The final conservative update is then done via Eq. 5.38.

See [24] for more details on this unsplit method, and [66] for details of the extension
to 3-d.

Figures 5.14 and 5.15 show the advection of a smooth Gaussian and a discontinuous
tophat diagonally on a coarse 32× 32 zone domain. Each show a diffusion of the
initial function, similar to what we saw in 1-d. In the tophat, we also see a slight
undershoot on the trailing side of the tophat after one period.

5.4.3 Timestep limiter for multi-dimensions

The timestep criterion we used in one-dimension (Eq. 4.5) needs to be generalized
for multi-dimensions. For the dimensionally split case, since we are basically piecing
together two one-dimensional sweeps, the timestep limit is usually taken as:

∆t = Cmin
{

∆x
|u| ,

∆y
|v|

}
(5.56)

This is, for example, the construction that is used with the dimensionally-split hy-
drodynamics solver in the original Flash code [34]*. Stability requires picking a CFL
number, C ≤ 1.

A general extension of the timestep restriction for a fully-multi-dimensional algo-
rithm is often written in the form (see, e.g., [71])

∆t = C
(

d

∑
i=1

|U · ed|
∆xd

)−1

(5.57)

*although, the paper does not explicitly write this out

68 Chapter 5. Second- (and Higher-) Order Advection

ai,j ai+1,j

ai,j+1

ai,j−1

â
n

+
1/

2

i+
1/

2,j,L

â
n+1/2
i,j+1/2,L

â
n+1/2
i,j+1/2,R

â
n+1/2
i,j−1/2,L

â
n+1/2
i,j−1/2,R

i− 1 i i+ 1

j − 1

j

j + 1

ai,j ai+1,j

ai,j+1

ai,j−1

â
n

+
1/

2

i+
1/

2,j,L

aTi,j+1/2

aTi,j−1/2

i− 1 i i+ 1

j − 1

j

j + 1

Figure 5.13: The construction of the an+1/2

i+1/2,j,L state. Top: first we compute the â’s—here
we show all of the â’s that will be used in computing the full left interface state at (i +
1/2, j). Bottom: after the transverse Riemann solves, we have the two transverse states
(aT

i,j+1/2
and aT

i,j−1/2
) that will be differenced and used to correct ân+1/2

i+1/2,j,L (illustrated by

the dotted lines) to make an+1/2

i+1/2,j,L.

5.4—Multi-dimensional advection 69

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0
y

density

1.0

1.2

1.4

1.6

1.8

t = 0.00000

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

density

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

t = 1.00000

Figure 5.14: Advection of a Gaussian profile with u = v = 1 for one period on a
32× 32 grid, with C = 0.8. This was run with pyro as ./pyro.py advection smooth

inputs.smooth

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

density

0.0

0.2

0.4

0.6

0.8

1.0

t = 0.00000

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

density

0.0

0.2

0.4

0.6

0.8

1.0

t = 1.00000

Figure 5.15: Advection of a tophat function with u = v = 1 for one period on a 32× 32
grid, with C = 0.8. This was run as ./pyro.py advection tophat inputs.tophat

where d is the coordinate direction, U = (u, v) is the velocity vector, and ed is the
unit vector in direction d. For these methods C ≲ 1. This is usually more restrictive
than Eq. 5.56.

For the CTU method described above, [24] argues that the inclusion of the transverse
information removes some of the some of the instability inherent in simpler schemes,
allowing for a larger timestep, restricted by Eq. 5.56.

Note, because of the different form of the timestep limiters here, it is not enough
to simply cite a CFL number when describing results, you must also explain which
form of the timestep calculation (Eq. 5.56 or Eq. 5.57) is being used.

70 Chapter 5. Second- (and Higher-) Order Advection

5.4.4 Method-of-lines in multi-dimensions

The multidimensional version of method-of-lines integration follows the ideas from
the one-dimensional case. We can start with Eq. 5.37, and define the fluxes over
though a face as:

• x-face:
⟨(ua)i+1/2,j⟩ =

1
∆y

∫ yj+1/2

yj−1/2

(ua)i+1/2,j dy (5.58)

• y-face

⟨(va)i,j+1/2⟩ =
1

∆x

∫ xi+1/2

xi−1/2

(va)i,j+1/2 dx (5.59)

These are similar to the expressions above, except there is no integral over time.
Again, to second order in space, we can just use the flux evaluated at the midpoint
in the face:

⟨(ua)i+1/2,j⟩ ≈ (ua)i+1/2,j (5.60)

The result is the ODE:

dai,j

dt
= − (ua)i+1/2,j − (ua)i−1/2,j

∆x
− (va)i,j+1/2 − (va)i,j−1/2

∆y
(5.61)

For the interface states, we separately construct slopes in each dimension: ∆(x)ai,j

is the slope in the x-direction, and ∆(y)ai,j is the slope in the y-direction. Then the
interface states are:

ai+1/2,j,L = ai,j +
1
2

∆a(x)
i,j (5.62)

ai+1/2,j,R = ai+1,j −
1
2

∆a(x)
i+1,j (5.63)

and

ai,j+1/2,L = ai,j +
1
2

∆a(y)i,j (5.64)

ai,j+1/2,R = ai,j+1 −
1
2

∆a(y)i,j+1 (5.65)

With these interface states, we have the method for evaluating the righthand side of
our ODE. We can then evolve the ODE using a Runge-Kutta integration method. At
each stage of the RK integration, we do the same construction of the interface states,
solve the Riemann problem, etc. Notice that unlike the directionally-split method,
we are doing the update in both directions at the same time—we are relying on the
ODE integrator to do the coupling in the different directions for us.

This construction is a lot simpler than the unsplit method described previously. The
cost of this simplicity is a reduced range of stability.

5.5—High-Order Finite difference methods 71

Performaing the stability analysis here is much more complicated. For simplicity,
consider a simple first-order upwind scheme in two-dimensions. Higher order time
integrators (like RK4) will have separate stages that look like a first-order-in-time
update, so this stability analysis can be thought of as applying to a single stage. Our
difference equation is:

an+1
i,j − an

i,j

∆t
= −u

an
i,j − an

i−1,j

∆x
− v

an
i,j − an

i,j−1

∆y
(5.66)

We introduce a single-mode Fourier function, as before, but this time with a mode in
each direction:

an
i,j = AneIiθeI jϕ (5.67)

Next, to simplify things, we’ll assume that u = v, and ∆x = ∆y, then C = u∆t/∆x =

v∆t/∆y. Inserting this into our difference equation gives:

An+1

An = 1− C
(

1− e−Iθ
)
− C

(
1− e−Iϕ

)
(5.68)

This form looks very close to the one-dimensional case, but it is difficult to analyt-
ically find the values of C, but we can numerically find the maximum |An+1/An|2
for θ ∈ [0, 2π] and ϕ ∈ [0, 2π] as a function of C. In doing this, we find that this
discretization is unstable (|An+1/An|2 > 1) for C > 1/2†.

This restriction is 1/d, where d is the dimensionality, and it is analogous to the
difference between the timestep limits for stability from the more generous Eq. 5.56

to the more restrictive Eq. 5.57. This reduced C for stability is discussed in [71] (see
section 4), and is also discussed in [52, 81]. Different reconstruction and integration
methods can vary this limit some, for instance, the fourth-order method in [52] allows
for ∆t ∑d

i=1(|U · ed|)/∆xd ≲ 1.4. Total variation diminishing Runge-Kutta methods
are popular for this application [39].

5.5 High-Order Finite difference methods

Chapter 4 introduced numerical methods for the linear advection equation

at + uax = 0 (5.69)

that were first or second order in space. The advantages of using numerical methods
that are higher order can be large, especially when in regions where the flow is
smooth. However, these must be balanced against the additional computational cost
and complexity. In addition, many higher order methods do no better than second
order methods in cases with discontinuities.

†See the script cfl.py

https://github.com/zingale/hydro_examples/blob/master/compressible/cfl.py

72 Chapter 5. Second- (and Higher-) Order Advection

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0
y

density

8

6

4

2

0

2

4

6

81e7

t = 1.00000

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

density

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

t = 1.00000

Figure 5.16: Advection of a tophat function using the method-of-lines approach with
4th-order Runge-Kutta time integration. We use u = v = 1 for one period on a 32× 32
grid. On the left is C = 0.8—this is clearly unstable. On the right is C = 0.4, which is
stable. This was run as ./pyro.py advection_rk tophat inputs.tophat

5.5.1 The problem with higher-order finite volume methods

The finite volume approach outlined in chapter 3 matches the physics of hyperbolic
balance laws perfectly, by maintaining the conservation of appropriate quantities
using the fluxes through the surfaces of each control volume or computational cell.
However, this leads to significant computational costs and complexities when going
beyond second order methods.

The inter-cell fluxes are computed by integrals over the face of the computational
cell. In one dimension the face is a single point and the integral needs the flux
evaluated at a single point, as in equation 3.14. In higher dimensions the face is
one dimensional (e.g., a line) or two dimensional (e.g., a square) and so the integral
must be approximated by evaluating the flux at multiple points. If we use Gauss
quadrature, this means that a third order method would require at least two flux
evaluations per face in two dimensions, and typically four evaluations per face in
three dimensions.

5.5.2 Finite differences

The conservative finite difference method starts from the endpoint for finite volume
methods, by considering the update formula (3.14)

∂⟨U ⟩i
∂t

= − 1
∆x
{

Fi+1/2 − Fi−1/2

}
. (3.14)

In the finite difference method a interpretation used is different. We are now thinking
of

1
∆x
{

Fi+1/2 − Fi−1/2

}
(5.70)

5.5—High-Order Finite difference methods 73

as representing a direct approximation to the derivative of the flux at xi. In particular,
we are not thinking of Fi+1/2 as being directly linked to the flux. Crucially the update
still ensures global conservation, as the “flux” term is re-used for neighbouring points
in the same way as in the finite volume case.

When we combine this viewpoint with the Method of Lines approach in section 5.3,
the implementation of a high-order finite boils down to

• using a high-order time integration scheme (such as a high order Runge-Kutta
method);

• finding a way that the finite difference in equation (5.70) approximates the
derivative of the flux both stably, and to a sufficiently high order.

5.5.3 WENO reconstruction

For the advection equation with constant advection speed u, our higher-order method
requires us to find a high-order approximation to ai+1/2. If we considered the five
points aj, j ∈ [i− 2, . . . , i + 2] then we could use the information from all five of these
points to approximate ai+1/2 as

a(Fifth)
i+1/2

= 1
60 (2⟨a⟩i−2 − 13⟨a⟩i−1 + 47⟨a⟩i + 27⟨a⟩i+1 − 3⟨a⟩i+2) +O(∆x5). (5.71)

Alternatively we could use only three of the points, in three different ways:

a(Third,2)
i+1/2

= 1
6 (2⟨a⟩i−2 − 7⟨a⟩i−1 + 11⟨a⟩i) +O(∆x3), (5.72a)

a(Third,1)
i+1/2

= 1
6 (−⟨a⟩i−1 + 5⟨a⟩i + 2⟨a⟩i+1) +O(∆x3), (5.72b)

a(Third,0)
i+1/2

= 1
6 (2⟨a⟩i + 5⟨a⟩i+1 − ⟨a⟩i+2) +O(∆x3). (5.72c)

Which is better? The five point stencil gives higher order accuracy, but includes
information from both sides of the point. This ignores information from the char-
acteristics and, near discontinuities, will lead to Gibbs oscillations. The three point
stencils give lower accuracy. However, they give us the flexibility to choose a stencil to
avoid discontinuities, possibly using the characteristic information. The advantages
of the higher-order methods are illustrated by reconstructing a smooth function in
figure 5.17. The disadvantages of using a fixed stencil are illustrated by reconstruct-
ing a non-smooth function in figure 5.18.

Exercise 5.5

Check that equations (5.71) and (5.72) give the claimed order of accuracy
results.

74 Chapter 5. Second- (and Higher-) Order Advection

0.0 0.2 0.4 0.6 0.8 1.0
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Sm
oo

th
 fu

nc
tio

n

10 3 10 2

x

10 13

10 11

10 9

10 7

10 5

10 3

|E
rro

r| 1

stencil 5
WENO
stencil 3 (0)
stencil 3 (1)
stencil 3 (2)

x3

x5

10 3 10 2

x

10 14

10 12

10 10

10 8

10 6

10 4

|E
rro

r| 2

stencil 5
WENO
stencil 3 (0)
stencil 3 (1)
stencil 3 (2)

x3

x5

Figure 5.17: A smooth sine function is reconstructed on the unit interval from the
(integral-average) data, at the blue circles in the top plot, to the right, at the red trian-
gles in the top plot. The convergence rate with grid resolution for the 5 point stencil
of equation (5.71) and the 3 point stencils of equation (5.72) are shown to match ex-
pectations in the bottom plots. The error from the WENO reconstruction described in
section 5.5.3 is, on this smooth function, converging with the expected order but larger
in magnitude.

The method of choosing the “best” stencil (to avoid discontinuities as far as possible)
is called Essentially Non-Oscillatory (ENO) reconstruction. It is not as accurate as it
could be given the size of the stencil it uses, and the logical branches required to find
the “best” stencil can reduce computational performance.

An alternative that avoids the problems of ENO schemes are the Weighted ENO, or
WENO, schemes. These use a combination of the possible ENO stencils to reconstruct
ai+1/2. This relies on the observation that there are constants Ck such that, for example,

a(Fifth)
i+1/2

=
2

∑
k=0

Cka(Third,r)
i+1/2

. (5.73)

5.5—High-Order Finite difference methods 75

Exercise 5.6

Check that the constants C0 = 3
10 , C1 = 3

5 , C2 = 1
10 make equation (5.73)

consistent with equations (5.71) and (5.72).

The WENO methods work by retaining the sum over all stencils as in equation (5.73),
but adjusting the weights to avoid oscillations. Ideally, in regions where the a(0,1)

stencils include a shock but the a(2) stencil does not the weights should be C̃0 = 0 =

C̃1 and C̃2 = 1. In order for this sum to make sense we will need the weights to add
to 1.

WENO algorithm

We can now write out the full WENO algorithm of order (2r − 1). The constant r
sets the size of the individual stencils as well as the (optimal) order of the scheme.
This section mostly uses the notation of Gerolymos et al. [36], and we will drop the
integral average notation (so ⟨a⟩i will be denoted ai).

First compute the individual stencils

ar,k,i+1/2 =
r−1

∑
ℓ=0

Ar,k,ℓai+k−ℓ, k = 0, . . . , r− 1. (5.74)

Here the Ar,k,ℓ terms are constants which, for given scheme accuracy r are needed to
compute the kth stencil.

We then want to combine these individual stencils to compute the WENO result. For
this we write

ar,WENO,i+1/2 =
r−1

∑
k=0

ωr,k,i+1/2ar,k,i+1/2. (5.75)

Here the ωr,k,i+1/2 terms are the weights that vary from point to point. They must
sum to one, so that we have a convex combination of the stencils:

r−1

∑
k=1

ωr,k,i+1/2 = 1. (5.76)

We also want the weights to match the optimal weights Cr,k in smooth regions. The
optimal weights are defined such that

ar,WENO,i+1/2 =
r−1

∑
k=0

Cr,kar,k,i+1/2 (5.77)

is accurate to order O(∆x(2r−1)) when q is smooth.

The choice of how to get from the optimal weights Cr,k to the nonlinear weights
ωr,k,i+1/2 defines the WENO scheme. The standard choice of Jiang and Shu is to

76 Chapter 5. Second- (and Higher-) Order Advection

1.0

0.5

0.0

0.5

1.0

5
po

in
t s

te
nc

il

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

No
n-

sm
oo

th
 fu

nc
tio

n

1.5

1.0

0.5

0.0

0.5

1.0

3
po

in
t s

te
nc

ils

0

1

2

3

4

5Jiang-Shu 0
Jiang-Shu 1
Jiang-Shu 2

0.0 0.2 0.4 0.6 0.8 1.0
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

W
EN

O
st

en
cil

s

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

C,

Optimal weight C0
Optimal weight C1
Optimal weight C2
WENO weight 0
WENO weight 1
WENO weight 2

Figure 5.18: A non-smooth function is reconstructed on the unit interval. The 5 point
stencil of equation (5.71) and the 3 point stencils of equation (5.72) both show oscilla-
tions near the discontinuity, whilst the WENO reconstruction does not. The WENO al-
gorithm depends on measuring the smoothness of the function. The Jiang-Shu smooth-
ness indicators β are mostly zero, but spike near the discontinuity. This feeds into the
weight ω that the WENO algorithm gives to each 3 point stencil it uses. Away from the
discontinuity the weights revert to the optimal C weights, but near the discontinuity a
single ω weight dominates meaning only a single 3 point stencil is used.

5.5—High-Order Finite difference methods 77

introduce a measure of the smoothness of the kth stencil by computing the sum of
the integral averages of its derivatives from order 1 up to order 2r− 1. For practical
implementation purposes this means computing the smoothness indicators βr,k,i+1/2 as

βr,k,i+1/2 = σr,k,ℓ,mai+k−ℓai+k−m. (5.78)

The terms σr,k,ℓ,m are pre-computed constants which give the coefficients in the quadratic
form for the kth stencil of width r in the reconstruction. These smoothness indicators
are non-negative, and will be large when the derivatives are large in magnitude. The
Jiang and Shu weights are then set by

ωr,k,i+1/2 =
αr,k,i+1/2

∑r−1
k=0 αr,k,i+1/2

, (5.79a)

αr,k,i+1/2 =
Cr,k

ϵ + β2
r,k,i+1/2

. (5.79b)

Here ϵ is a small number introduced to avoid division-by-zero problems. The form
of ωr,k,i+1/2 in equation (5.79a) guarantees that the convex sum condition in equa-
tion (5.76) holds. The form of αr,k,i+1/2 ensures that when all the smoothness indi-
cators βr,k,i+1/2 are the same magnitude the weights ωr,k,i+1/2 will match the optimal
weights Cr,k, but when a smoothness indicator is large (i.e., when the associated sten-
cil has large derivatives, typically associated with discontinuities), the contribution
of its associated stencil will be small. An example of this is shown in figure 5.18.

Finally, we note that this method has reconstructed ai+1/2 from the left. For the ad-
vection equation case where the advection speed u is positive this is all we need: the
characteristic information tells us that we should use this reconstruction. In the case
where the advection speed is negative we should reconstruct from the right. In the
implementation it is easiest to implement only one reconstruction direction and pass
the data in in reverse order.

Exercise 5.7

Taking the values for the C, A and σ constants from Gerolymos et al. or
Shu’s review [72], construct a WENO reconstruction method for r = 2.
Check your results on smooth and non-smooth functions.

Implementation issues with WENO schemes

A convergence test on the WENO schemes with r = 3 and r = 5 is shown in fig-
ure 5.19. This should be compared to figure 5.9, as in both a Gaussian profile is
advected five times around a periodic domain. The WENO schemes show higher
absolute accuracy for moderate size grids (N ≳ 100) and show faster convergence.

78 Chapter 5. Second- (and Higher-) Order Advection

1026 × 101

N

10-6

10-5

10-4

10-3

10-2
‖a

fi
n
al
−
a

in
it
‖ 2

Convergence of Gaussian, RK4
O(∆x5)

O(∆x4)

WENO, r= 3

WENO, r= 5

Figure 5.19: WENO solutions for advecting a Gaussian five periods, using two different
orders. A fourth order Runge-Kutta method is used for time evolution. For r = 3 we
see the expected fifth (2r− 1) order convergence. For r = 5 we see fourth order, rather
than the expected ninth order, convergence. This is as the error from the time integrator
dominates.
Ï hydro_examples: weno.py

However, it is clear that whilst the r = 3 method converges at fifth order as expected,
the r = 5 WENO method does not converge at ninth order but at fourth order. This
is explained by the time integrator. We remember that any solver has an error both
from the spatial and the time discretization. In figure 5.19 the time integrator is
the classic fourth order Runge-Kutta, and it is the error from this integrator that is
dominating.

To confirm this, figure 5.20 uses the eigth order Dormand-Price Runge-Kutta method
with adaptive step size control (using the scipy.integrate.ode routine). Here we
see high order convergence for all r, and in each case the convergence rate is 2r− 2
for no reason I can understand.

5.6 Going further

• Slope limiting: there are a wide variety of slope limiters. All of them are de-
signed to reduce oscillations in the presence of discontinuities or extrema, but
some are higher-order and can be less restrictive when dealing with smooth
flows. Most hydro texts (e.g. [46, 82]) provide an introduction to the design of
such limiters.

• Multi-dimensional limiting: the procedure described above still does the limiting

https://github.com/zingale/hydro_examples/blob/master/advection/weno.py

5.6—Going further 79

1023 × 101 4 × 101 6 × 101

N

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

‖a
fi
n
al
−
a

in
it
‖ 2

Convergence of Gaussian, DOPRK8

O(∆x4)

O(∆x6)

O(∆x8)

O(∆x10)

WENO, r= 3

WENO, r= 4

WENO, r= 5

WENO, r= 6

Figure 5.20: WENO solutions for advecting a Gaussian one periods, using four dif-
ferent orders. An eighth order Dormand-Price Runge-Kutta method is used for time
evolution. This minimizes the time integrator error and we see convergence at order
2r− 2 for all schemes, although the time integrator error eventually shows in the high-
est order case.
Ï hydro_examples: weno.py

in each dimension independent of the other when doing the unsplit reconstruc-
tion. This can lead to overshoots/ undershoots. An example of a method that
considers the limiting in multi-dimensions is [11, 51].

• Spatially-varying velocity field: if we consider a spatially varying velocity field,
u(x, y) and v(x, y) that is specified externally, then we can describe the advec-
tion of a quantity ϕ as:

ϕt + (ϕu)x + (ϕv)y = 0 (5.80)

The solution procedure is largely the same as described above. We write:

ϕn+1/2

i+1/2,j,L = ϕn
i,j +

∆x
2

∂ϕ

∂x
+

∆t
2

∂ϕ

∂t
+ . . .

= ϕn
i,j +

∆x
2

∂ϕ

∂x
+

∆t
2
[
−(ϕu)x − (ϕv)y

]
i,j

= ϕn
i,j +

∆x
2

(
1− ∆t

∆x
ui,j

)
∂ϕ

∂x︸ ︷︷ ︸
ϕ̂n+1/2

i+1/2,j,L

−∆t
2

[ϕux]i,j −
∆t
2
[
(ϕv)y

]
i,j (5.81)

and upwinding is used to resolve the Riemann problem for both the transverse
and normal interface states. This type of construction comes up in low Mach
number flows, where the density can be advected according to the velocity field
in much the fashion shown here, and is described in § 15.3.2.

https://github.com/zingale/hydro_examples/blob/master/advection/weno.py

80 Chapter 5. Second- (and Higher-) Order Advection

For compressible hydrodynamics, we often have density-weighted quantities
that we advect. This extension is described in § ??.

5.7 pyro experimentation

To gain some experiences with these ideas, we can use the advection solver in pyro
(see Appendix B to get started). The pyro advection solver implements the second-
order unsplit advection algorithm described in the previous sections. To run this
solver on the Gaussian advection problem, do:

./pyro.py advection smooth inputs.smooth

By default, this will advect a Gaussian profile diagonally across the domain for a
single period.

To get a feel for the advection algorithm, here are some suggested exercises:

Exercise 5.8

Implement a tophat initial profile and run with and without limiters (this
is controlled by the advection.limiter runtime parameter).

Exercise 5.9

Look at the solution when you advect purely in the x- or y-direction and
compare to the diagonal case—notice how the direction affects the error in
the solution. This is the imprint of the grid we discretize on.

Exercise 5.10

Implement a dimensionally-split version of the advection algorithm and
compare the results to the unsplit version. Pick a suitable norm and
measure the convergence of the methods.

Chapter6
Burgers’ Equation

6.1 Burgers’ equation

The inviscid Burgers’ equation is the simplest nonlinear hyperbolic equation:

ut + uux = 0 (6.1)

Here u is both the quantity being advected and the speed at which it is moving.
Recall that for the linear advection equation, we saw that the solution was constant
along lines x = ut + x0, which are parallel, since u is spatially constant. For Burgers’
equation, this is no longer the case, and the characteristic lines are now given by
dx/dt = u, with x(0) = x0. Since u = u(t), we cannot integrate this directly.

Exercise 6.1

To find the lines along which the solution to Burgers’ equation is constant,
consider the full change in u:

du =
∂u
∂t

∣∣∣∣
x

dt +
∂u
∂x

∣∣∣∣
t
dx = 0 (6.2)

Here, we seek u = constant, so we set du = 0. Now, using the Burg-
ers’ equation itself, show that this implies that the lines along which the
solution is constant are:

dx
dt

= u(x, t) (6.3)

If we take u0 = u(t = 0), then we can look at how the characteristic behave over a
small time interval (before u(x, t) changes significantly). Figure 6.1 shows the behav-
ior for an initial velocity with sinusoidal profile. We see that after a short period of

git version: ae2370a3e0d5 . . . 81

82 Chapter 6. Burgers’ Equation

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

u

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

t

Figure 6.1: (top) Initially sinusoidal velocity distribution (bottom) Approximate char-
acteristic structure for Burgers’ equation, using u0 = u(t). Note that after a short
period of time, the characteristics intersect, signaling the formation of a shock.

time, the characteristics intersect. At the point, (xs, ts) where they intersect, there is
no way to trace backwards along the characteristics to find a unique initial state. This
merging of the characteristics in the x-t plane is a shock, and represents just one way
that nonlinear problems can differ from linear ones.

Another type of wave not present in a linear system is a rarefaction. Figure 6.2 shows
initial conditions of slower velocity to the left of faster velocity. We see that the
characteristics diverge in this case, and we will be left with having to fill in the
solution inbetween as some intermediate state.

In conservative form, Burgers’ equation appears as:

ut +
[1

2 u2]
x = 0 (6.4)

The solution of this follows the same methodology as described in Chapter 4. The
interface states are predicted as to second order by Taylor expanding in space and

6.1—Burgers’ equation 83

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

u

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

t

Figure 6.2: (top) Initially discontinuous velocity distribution with low velocity left
of high velocity (bottom) Approximate characteristic structure for Burgers’ equation,
using u0 = u(t). Note that after a short period of time, the characteristics diverge—this
is a rarefaction.

time:

un+1
i+1/2,L = un

i +
∆x
2

∂u
∂x

+
∆t
2

∂u
∂t

∣∣∣∣
i
+ . . . (6.5)

= un
i +

∆x
2

∂u
∂x

+
∆t
2

(
−ui

∂u
∂x

)∣∣∣∣
i
+ . . . (6.6)

= un
i +

∆x
2

(
1− ∆t

∆x
ui

)
∂u
∂x

∣∣∣∣
i
+ . . . (6.7)

The only difference with the linear advection equation is that now ui∆t/∆x varies
from zone to zone, whereas with linear advection, it is the constant C. The slopes are
computed using the same limiters as with linear advection.

The Riemann problem differs from linear advection. As we saw above, the charac-
teristic curves can intersect in the x-t plane, and it is not possible to trace backward
from time to learn where the flow originated. This is the condition for a shock.

84 Chapter 6. Burgers’ Equation

x
xrxl

t

tn+ 1

tn

shock: S= ∆x/∆t

ur

ul

f= f(ul) f= f(ur)

Figure 6.3: A rightward moving shock in the x-t plane separating two states: ul and
ur.

The shock speed is computed through the Rankine-Hugoniot jump conditions. For a
scalar equation, these are easy to construct. We’ll follow the method of [46]. Fig-
ure 6.3 shows two states separated by a rightward moving shock in the x-t plane. At
time tn, the state in our interval (x ∈ [xl , xr]) is entirely ur. As time evolves, we imag-
ine our interval [xl , xr] moving vertically upwards in the diagram, and we see that it
contains a mix of states ul and ur. Finally, at time, tn+1 it is entirely ul . The shock
moves with a speed S = ∆x/∆t in this figure. To determine the speed, we integrate
our conservation law over both space and time (and normalize by ∆x = xr − xl):

1
∆x

∫ xr

xl

dx
∫ tn+1

tn
dt ut = −

1
∆x

∫ xr

xl

dx
∫ tn+1

tn
dt [f (u)]x (6.8)

Doing the t integral on the left and x integral on the right, we have

1
∆x

∫ xr

xl

{
u(tn+1)− u(tn)

}
dx = − 1

∆x

∫ tn+1

tn
{ f (u)|x=xr − f (u)|x=xl} dt (6.9)

Recognizing that at t = tn, u = ur and at t = tn+1, u = ul , in the left side becomes

1
∆x

∫ xr

xl

{
u(tn+1)− u(tn)

}
dx = {u(tn+1)− u(tn)} = ul − ur . (6.10)

For the right side, we see that all along x = xl the flux is f = f (ul) for t ∈ [tn, tn+1].
Likewise, all along x = xr, the flux is f = f (ur) in the same time interval (see the

6.1—Burgers’ equation 85

figure). Therefore, our expression becomes:

(ul − ur) = −
∆t
∆x

[f (ur)− f (ul)] (6.11)

and using S = ∆x/∆t, we see

S =
f (ur)− f (ul)

ur − ul
(6.12)

For Burgers’ equation, substituting in f (u) = u2/2, we get

S =
1
2
(ul + ur) (6.13)

With the shock speed known, the Riemann problem is straightforward. If there is a
shock (compression, so ul > ur) then we compute the shock speed and check whether
the shock is moving to the left or right, and then use the appropriate state. If there is
no shock, then we can simply use upwinding, as there is no ambiguity as to how to
trace backwards in time to the correct state. Putting this together, we have:

if ul > ur
(shock)

: us =

ul if S > 0
ur if S < 0
0 if S = 0

(6.14)

otherwise : us =

ul if ul > 0
ur if ur < 0
0 otherwise

(6.15)

Once the interface states are constructed, the flux is calculated as:

Fn+1/2

i+1/2
=

1
2

(
un+1/2

i+1/2

)2
(6.16)

and the conservative update is

un+1
i = un

i +
∆t
∆x

(
Fn+1/2

i−1/2
− Fn+1/2

i+1/2

)
(6.17)

The timestep constraint now must consider the most restrictive Courant condition
over all the zones:

∆t = min
i
{∆x/ui} (6.18)

Figure 6.4 shows the solution to Burgers’ equation using the 2nd-order piecewise
linear method described here, with the MC limiter. The initial conditions chosen are
all positive velocity, with a lower velocity to the left of the higher velocity. As the

86 Chapter 6. Burgers’ Equation

0.0 0.2 0.4 0.6 0.8 1.0
x

1.0

1.2

1.4

1.6

1.8

2.0
u

Figure 6.4: Solution to the inviscid Burgers’ equation with 256 zones and a Courant
number, C = 0.8 for initial conditions that generate a rarefaction: the left half of the
domain was initialized with u = 1 and the right half with u = 2. This initial velocity
state creates a divergent flow. The curves are shown 0.02 s apart, with the darker
grayscale representing later in time.
Ï hydro_examples: burgers.py

solution evolves, the state on the right will rush away from the state on the left, and
spread out like a fan. This is called a rarefaction wave or simply a rarefaction.

Figure 6.5 shows the solution to Burgers’ equation with initially sinusoidal data:

u(x, t = 0) =

1 x < 1/3

1 + 1
2 sin

(
2π(x−1/3)

1/3

)
1/3 ≤ x ≤ 2/3

1 x > 2/3

(6.19)

This is analogous to the case shown in Figure 6.1—we see the solution steepen and
form a shock which propagates to the right. The shock is practically infinitesimally
thin here, since there is no explicitly viscosity to smear it out*.

*Numerical diffusion, in the form of truncation error of our method, will smear things a little.

https://github.com/zingale/hydro_examples/blob/master/burgers/burgers.py

6.1—Burgers’ equation 87

0.0 0.2 0.4 0.6 0.8 1.0
x

0.6

0.8

1.0

1.2

1.4
u

Figure 6.5: Solution to the inviscid Burgers’ equation with 256 zones and a Courant
number, C = 0.8. The initial conditions here are sinusoidal and the solution quickly
steepens into a shock.The curves are shown 0.02 s apart, with the darker grayscale
representing later in time.
Ï hydro_examples: burgers.py

Exercise 6.2

Extend your 1-d finite-volume solver for advection (from Exercise 5.1) to
solve Burgers’ equation. You will need to change the Riemann solver and
use the local velocity in the construction of the interface states. Run the
examples shown in Figures 6.4 and 6.5.

As we’ll see shortly, these two types of waves can also appear in the Euler equations
for hydrodynamics.

A final thing to note is that we solved Burgers’ equation in conservative form. For
shock solutions, this is essential, since as we noted earlier, that finite-volume method
relates to the integral form of the PDEs, the discontinuity is nicely handled by
the Riemann solver. We could also imagine differencing Burgers’ equation in non-
conservative form, i.e., starting with:

ut + uux = 0 (6.20)

If you did this (for instance, using a finite difference scheme and an upwind differ-
ence for ux), you would find that you get the wrong shock speed.

https://github.com/zingale/hydro_examples/blob/master/burgers/burgers.py

88 Chapter 6. Burgers’ Equation

Exercise 6.3

Using a simple first-order finite-difference method like we described
in Ch. 4 for linear advection, difference the conservative and non-
conservation formulations of Burgers’ equation as:

un+1
i − un

i
∆t

= −1
2
(un

i)
2 − (un

i−1)
2

∆x
(6.21)

and
un+1

i − un
i

∆t
= −un

i (u
n
i − un

i−1)

∆x
(6.22)

(Note: these discretizations are upwind so long as u > 0).
Run these with the shock initial Riemann conditions:

u(x, t = 0) =

2 x < 1/2

1 x > 1/2
(6.23)

and measure the shock speed from your solution by simply differencing
the location of the discontinuity at two different times. Compare to the
analytic solution for a shock for the Riemann problem.

6.2 Characteristic tracing

A concept that will be useful in the next section is characteristic tracing. The idea
is that we only include information in the interface states if the characteristic that
carries that information is moving toward the interface. For Burgers equation, this
is simple, since there is only a single characteristic—the velocity. So for the left state
on an interface, we’d only add the change if the velocity ui > 0 (moving toward the
interface i + 1/2):

un+1
i+1/2,L = un

i +
∆x
2

(
1− ∆t

∆x
max(0, ui)

)
∂u
∂x

∣∣∣∣
i
+ . . . (6.24)

Notice that the effect of this is to set the interface state simply to the value given by
the piecewise linear reconstruction on the interface if the wave isn’t moving to the
interface.

6.3 Going further

• The equation we’ve been dealing with here is the inviscid Burgers’ equation.
The full Burgers’ equation includes viscosity (a velocity diffusion):

ut + uux = ϵuxx (6.25)

6.4—WENO methods, nonlinear equations, and flux-splitting 89

To solve this, we need to first learn about techniques for diffusion, and then
how to solve equations that span multiple PDE types. This will be described in
§11.3.

• Aside from pedagogical interest, Burgers’ equation can be used as a simple
model of traffic flow (where shocks can arise from people slamming on the
brakes). Many sources discuss this application, including the text by [46].

6.4 WENOmethods, nonlinear equations, and flux-splitting

For a nonlinear scalar conservation law

ut + f (u)x = 0 (6.26)

the WENO method introduced in section ?? above does not work, as we have as-
sumed the characteristic information travels in one direction only. We have also
reconstructed the variable q and from that constructed the “flux” which we feed into
the differencing formula of equation (5.5) to update the solution: this will not work
either.

In the nonlinear case, we instead reconstruct the flux directly. That is, given the state
ui at location xi, we compute the flux fi = f (ui) and reconstruct the flux fi+1/2 using
the WENO reconstruction above.

This has the significant problem that we have no characteristic information for the
flux: does it propagate to the left or to the right? To get around this we introduce
flux splitting. We write

f (u) = f (+)(u) + f (−)(u) (6.27)

where we choose the functions such that the information contained in f (+) propa-
gates to the right and that in f (−) propagates to the left. There are many ways of
doing this, but the simplest is the Lax-Friedrichs flux splitting

f (±)(u) = 1
2 (f (u)± αu) (6.28)

where α ≥ max |∂u f |. With α being larger than the maximum propagation speed,
this means that

∂u f (+) ≥ 0, ∂u f (−) ≤ 0, (6.29)

and the characteristic information contained in f (±) will propagate as required.

The simplest flux-split algorithm is then

1. Compute the maximum characteristic speed α over the entire computational
grid;

2. Compute the split fluxes f (±) from equation (6.28);

90 Chapter 6. Burgers’ Equation

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90
x

0.6

0.8

1.0

1.2

1.4
u

High resolution
PLM, MC
WENO, r=3
WENO, r=5

Figure 6.6: Numerical solutions to Burgers’ equation using the piecewise linear
method as in figure 6.5 and two flux-split WENO methods as outlined in section 6.4.
This uses the same sinusoidal data as figure 6.5 shortly after shock formation. Note
that the WENO methods are not obviously any better at resolving the shock than the
simpler piecewise linear approach.
Ï hydro_examples: weno_burgers.py

3. Reconstruct f (+) to the right using, e.g., the WENO algorithm of section 5.5.3;

4. Reconstruct f (−) to the left using the same method;

5. Compute fi+1/2 = f (+)
i+1/2

+ f (−)i+1/2
;

6. Update the state using equation (3.14).

As a direct comparison between the piecewise linear method used at the start of
this chapter, and the more complex WENO methods introduced here, we start with
looking at a shock forming from smooth initial data. Figure 6.6 shows the evolution
of the sinusoidal initial data as used in figure 6.5, but only showing the result at one
time, shortly after characteristic crossing leads to a shock. We see that there is very
little difference between the different numerical methods. The characteristic focusing
means that all the methods have a similar number of points within the shock. The
piecewise linear method appears to capture the edges of the shock slightly more
accurate than the (higher order) WENO method with r = 3. This is likely as the
piecewise linear method is using the exact solution to the Riemann Problem, whilst
the WENO method is using the more diffusive Lax-Friedrichs flux splitting. At the
higher r = 5 order there is a marginal advantage to the WENO method.

The advantages of the WENO method arise when the profile is still continuous, as
in the rarefaction problem, or at times before shocks have formed. To confirm that

https://github.com/zingale/hydro_examples/blob/master/advection/weno_burgers.py

6.4—WENO methods, nonlinear equations, and flux-splitting 91

1026 × 101 2 × 102

N

10-7

10-6

10-5

10-4

10-3

‖a
fi
n
al
−
a

in
it
‖ 2

Convergence of Burger's, Gaussian, RK4

O(∆x5)

O(∆x7)

WENO, r= 3

WENO, r= 4

Figure 6.7: WENO solutions from evolving Burgers’ equation for an initial Gaussian
profile, stopping before the solution is discontinuous. A fourth order Runge-Kutta
method is used for time evolution. For r = 3 we see the expected fifth (2r − 1) order
convergence. For r = 5 we see seventh order convergence briefly, before the error from
the time integrator dominates.
Ï hydro_examples: weno_burgers.py

high-order convergence is still possible for a nonlinear problem, an initially Gaussian
profile is evolved for a short time and compared to the exact solution (computed
from characteristic tracing). The resulting error convergence is shown in figure 6.7.
We see the expected fifth and seventh order convergence rates, at least for some of
the resolutions. At too low a resolution the higher order terms in the error expansion
affect the solution. At too high a resolution, for the higher-order method, the time
integration error starts to dominate.

https://github.com/zingale/hydro_examples/blob/master/advection/weno_burgers.py

Chapter7
Euler Equations: Theory

7.1 Euler equation properties

The Euler equations* describe conservation of mass, momentum, and energy in the
fluid approximation. Their general form, without any source terms, is:

∂ρ

∂t
+∇ · (ρU) = 0 (7.1)

∂(ρU)

∂t
+∇ · (ρUU) +∇p = 0 (7.2)

∂(ρE)
∂t

+∇ · (ρEU + pU) = 0 (7.3)

Here ρ is the density, U is the velocity vector, U = ux̂ + vŷ, p is the pressure, and
E is the total energy / mass, and can be expressed in terms of the specific internal
energy, e, and kinetic energy as:

E = e +
1
2
|U|2 (7.4)

The equations are closed with the addition of an equation of state. A common choice
is the gamma-law EOS:

p = ρe(γ− 1) (7.5)

where γ is the ratio of specific heats for the gas/fluid (for an ideal, monatomic gas,
γ = 5/3), but any relation of the form:

p = p(ρ, e) (7.6)

*We focus on the Euler equations, which are the most commonly modeled set of fluid equations in
astrophysics. The more general equation set, the Navier-Stokes equations, includes dissipative terms.
However, for astrophysical flows, the scales on which these dissipative terms operate are usually much
smaller than the system of interest (equivalently, Reynolds numbers of astrophysical flows are very
large).

git version: ae2370a3e0d5 . . . 93

94 Chapter 7. Euler Equations: Theory

will work. For many astrophysical environments, we may not be able to express
this relation analytically, but instead will solve it via numerical integration or by
interpolating from tabulated results.

For a derivation of the equations of hydrodynamics using moments of the Boltzmann
equation see [22, 73]. For a physically-motivated derivation from conservation, see
[22, 46].

In one dimension, they appear as†:

∂ρ

∂t
+

∂(ρu)
∂x

= 0 (7.7)

∂(ρu)
∂t

+
∂(ρuu + p)

∂x
= 0 (7.8)

∂(ρE)
∂t

+
∂(ρuE + up)

∂x
= 0 (7.9)

One thing that we can notice immediately is that there is no need for temperature
in this equation set, although often, when source terms are present, we will need to
obtain temperature from the equation of state.

In this form, the equations are said to be in conservative form, i.e. they can be written
as:

U t + [F(U)]x = 0 (7.10)

with

U =

ρ

ρu
ρE

 F(U) =

ρu
ρuu + p

ρuE + up

 (7.11)

We can write this in quasi-linear form by first expressing the flux vector in terms of the
conserved variables directly. Taking m ≡ ρu, E ≡ ρE, and assuming a gamma-law
EOS‡,

p = ρe(γ− 1) =
(
E − 1

2
m2

ρ

)
(γ− 1) (7.12)

we have

F(U) =

m
1
2

m2

ρ (3− γ) + E(γ− 1)
mE
ρ γ− 1

2
m3

ρ2 (γ− 1)

 (7.13)

†assuming Cartesian coordinates
‡we can relax this assumption by writing p = p(ρ, e), and then taking the derivatives of this as

needed: ∂p/∂ρ, ∂p/∂m = ∂p/∂e|ρ∂e/∂m, and ∂p/∂E = ∂p/∂e|ρ∂e/∂E , with e = (E − 1/2m2/ρ)/ρ. But
as we’ll see, there are simpler systems to work with.

7.1—Euler equation properties 95

The Jacobian§ of this flux vector can now be computed as A = ∂F/∂U :

A(U) =

0 1 0
− 1

2 u2(3− γ) u(3− γ) γ− 1
1
2 (γ− 2)u3 − uc2

γ−1
3−2γ

2 u2 + c2

γ−1 uγ

 (7.14)

where the speed of sound is c =
√

γp/ρ. With this, our system can be written as:

U t + A(U)U x = 0 (7.15)

This matrix is quite complex and difficult to work with. The eigenvectors of this
matrix can be found in a variety of sources (e.g. [76, 82]).

An alternate way to express these equations is using the primitive variables: ρ, u, p.

Exercise 7.1

Show that the Euler equations in primitive form can be written as

∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u
∂x

= 0 (7.16)

∂u
∂t

+ u
∂u
∂x

+
1
ρ

∂p
∂x

= 0 (7.17)

∂p
∂t

+ u
∂p
∂x

+ γp
∂u
∂x

= 0 (7.18)

Notice that the velocity equation looks like Burgers’ equation, and is nonlinear. This
nonlinearity will admit shock and rarefaction solutions like we saw with Burgers’
equation.

The primitive variable system can be written compactly as:

qt + A(q)qx = 0 (7.19)

where

q =

ρ

u
p

 A(q) =

u ρ 0
0 u 1/ρ

0 γp u

 (7.20)

The eigenvalues of A can be found via |A− λI| = 0, where | . . . | indicates the deter-
minant and λ are the eigenvalues.

§The Jacobian, J of a vector F(U) with F = (f1, f2, . . . , fn)⊺ and U = (u1, u2, . . . , un)⊺ is

J ≡ ∂F
∂U =

∂ f1/∂u1 ∂ f1/∂u2 . . . ∂ f1/∂un
∂ f2/∂u1 ∂ f2/∂u2 . . . ∂ f2/∂un

...
...

. . .
...

∂ fn/∂u1 ∂ fn/∂u2 . . . ∂ fn/∂un

96 Chapter 7. Euler Equations: Theory

Exercise 7.2

Show that the eigenvalues of A are λ(−) = u − c, λ(◦) = u, λ(+) =

u + c.

Note that both the conserved Jacobian matrix, A(U), and the primitive variable ma-
trix, A(q), have the same eigenvalues, since they represent the same physics.

In Eq. 7.18, we used the algebraic gamma-law equation of state to replace e with p,
however, for a general equation of state, we can get the appropriate expression by
writing p = p(ρ, s):

Dp
Dt

=
∂p
∂ρ

∣∣∣∣
s

Dρ

Dt
+

∂p
∂s

∣∣∣∣
ρ�

�
�7

0
Ds
Dt

(7.21)

where Ds/Dt = 0 when no entropy sources are present (we will relax this assump-
tion in § 15.1). Recognizing that Γ1 ≡ ∂ log p/∂ log ρ|s, we have:

∂p
∂t

+ u
∂p
∂x

+ Γ1 p
∂u
∂x

= 0 (7.22)

as the generalization of the pressure equation¶. The sound speed is then c2 = Γ1 p/ρ.

These eigenvalues are the speeds at which information propagates through the fluid.
Since the eigenvalues are real, this system (the Euler equations) is said to be hyperbolic.
Additionally, since A = A(q), the system is said to be quasi-linear. Note, physically,
these eigenvalues are telling us that information is communicated at the speed of the
fluid (u), as well as the speed of sound moving with respect to the fluid (u± c).

We’ll use the symbols {−, ◦,+} to denote the eigenvalues and their corresponding
eigenvectors throughout these notes. The right and left eigenvectors can be found
via:

A r(ν) = λ(ν)r(ν) ; l(ν) A = λ(ν)l(ν) (7.23)

where ν = {−, ◦,+} corresponding to the three waves, and there is one right and
one left eigenvector for each of the eigenvalues.

¶Γ1 is one of the many adiabatic indices that describe the coupling between different thermodynamic
quantities under compression/expansion. Any stellar structure book should give a good background,
e.g., [40]. Note that for an ideal gas, Γ1 = γ

7.1—Euler equation properties 97

Exercise 7.3

Show that the right eigenvectors are:

r(−) =

1
−c/ρ

c2

 r(◦) =

1
0
0

 r(+) =

1
c/ρ

c2

 (7.24)

and the left eigenvectors are:

l(−) =
(

0 − ρ
2c

1
2c2

)
(7.25)

l(◦) =
(

1 0 − 1
c2

)
(7.26)

l(+) =
(

0 ρ
2c

1
2c2

)
(7.27)

Note that in general, there can be an arbitrary constant in front of each
eigenvector. Here they are normalized such that l(i) · r(j) = δij.

A Jupyter notebook using SymPy that derives these eigenvectors is available: Ï
hydro_examples: euler.ipynb ||

A final form of the equations is called the characteristic form. Here, we wish to diago-
nalize the matrix A. We take the matrix R to be the matrix of right eigenvectors,

R = (r(−)|r(◦)|r(+)) (7.28)

(i.e., R is a square matrix whose columns are the eigenvectors), and L is the corre-
sponding matrix of left eigenvectors:

L =

l(−)

l(◦)

l(+)

 (7.29)

Note that L R = I = R L, and L = R−1.

Exercise 7.4

Show that Λ = LAR is a diagonal matrix with the diagonal elements
simply the 3 eigenvalues we found above:

Λ =

λ(−)

λ(◦)

λ(+)

 (7.30)

||if you don’t have Jupyter, you can view this rendered online via the github link.

https://github.com/zingale/hydro_examples/blob/master/compressible/euler.ipynb

98 Chapter 7. Euler Equations: Theory

To transform our primitive variable system into the characteristic form, we start by
multiplying by L:

Lqt + LAqx = 0 (7.31)

Next, recalling that RL = I (we can insert the identity matrix where we please), we
can rewrite our system as:

Lqt + LARLqx = 0 (7.32)

Finally, defining dw = Ldq,
wt + Λwx = 0 (7.33)

Here, the w are the characteristic variables. Note that we cannot in general integrate
dw = Ldq to write down the characteristic quantities. Since Λ is diagonal, this
system is a set of decoupled advection-like equations:

w(−)
t + λ(−)w(−)

x = 0 (7.34)

w(◦)
t + λ(◦)w(◦)

x = 0 (7.35)

w(+)
t + λ(+)w(+)

x = 0 (7.36)

If the system were linear, then the solution to each would simply be to advect the
quantity w(ν) at the wave speed λ(ν). We could then get back the primitive variables
as dq = L−1dw = Rdw.

The basic idea of hyperbolic systems of PDEs is that there is one wave for each
eigenvalue, and these define the characteristic curves, dx/dt = λ(ν). As we discussed
with linear advection and Burgers’ equation, along the characteristics the solution is
constant. Across them, the solution jumps. For a linear system, the characteristics
are straight lines.

Imagine initial conditions consisting of a jump in the primitive variables, ∆q. The
corresponding jumps in characteristic variables are ∆w ∼ L∆q (where the∼ accounts
for the fact that in a nonlinear system, L = L(q)). The characteristic form of the
equations says that each of the waves will carry its respective jump, ∆w. Since dq =

L−1dw = Rdw, the jump in the primitive variable across each wave is proportional
to the right-eigenvector associated with that wave. So, for example, since r(◦) is only
non-zero for the density element (see Eq. 7.24), this then means that only density
jumps across the λ(◦) = u wave—pressure and velocity are constant across this wave
(see for example, Toro [82], Ch. 2, 3 or LeVeque [46] for a thorough discussion).

Figure 7.1 shows the three waves emanating from an initial discontinuity. This is a
classic problem called the Sod problem [74]. The initial conditions are

ρl = 1 ρr = 1/8

ul = 0 ur = 0 (7.37)

pl = 1 pr = 1/10

7.2—The Riemann problem 99

Here we see the three waves propagating away from the initial discontinuity. The left
(u− c) wave is a rarefaction, the middle (u) is the contact discontinuity, and the right
(u + c) is a shock. Note that all 3 primitive variables jump across the left and right
waves, but only the density jumps across the middle wave. This reflects the right
eigenvectors. Also note that no waves have reached the far left and far right yet, the
conditions there are the same as the initial conditions.

7.2 The Riemann problem

Just like with advection and Burgers’ equation, we will need to solve a Riemann
problem. However, as our system is nonlinear, and has 3 waves, the solution is
considerably more complex, but the general ideas are straightforward. Here we
review the basic outline of operations, and refer to Toro [82] for full details on a
variety of methods for solving the Riemann problem.

The Riemann problem consists of a left and right state separated by an interface.
For the Euler equations, there are three eigenvalues, which are the speeds at which
information propagates. Each of these correspond to a wave that will move out from
the interface with time, and each wave will carry with it a jump in the characteristic
variables. Figure 7.2 shows the three waves moving out from the interface, separating
space into 4 regions, marked: L, L∗, R∗, and R. We typically work in terms of
primitive variables. The states in the L and R regions are simply the left and right
input states—the waves have not had time to reach here, so they are unmodified.

Looking at the middle right eigenvector, r(◦), we identify the middle wave as a contact
discontinuity. There is neither compression nor expansion across this wave (since the
velocity does not jump across it) and it simply separates two states. We also know
from the eigenvectors that the pressure is constant across the contact.

The left and right waves can be either a rarefaction or a shock. It will be a shock if
the flow is compressing and a rarefaction otherwise.

We already see that the only unknowns are u⋆, p⋆, ρ⋆,L, and ρ⋆,R.

7.2.1 Rarefactions

The conditions across a rarefaction can be understood by considering a system where
entropy replaces pressure, qs = (ρ, u, s)⊺. The entropy equation is simply Ds/Dt = 0.
We need to express the pressure gradient in the velocity equation in terms of qs.

∂p(ρ, s)
∂x

=
∂p
∂s

∣∣∣∣
ρ

∂s
∂x

+
∂p
∂ρ

∣∣∣∣
s

∂ρ

∂x
=

∂p
∂s

∣∣∣∣
ρ

∂s
∂x

+
pΓ1

ρ

∂ρ

∂x
(7.38)

giving
∂u
∂t

+ u
∂u
∂x

+
1
ρ

[
∂p
∂s

∣∣∣∣
ρ

∂s
∂x

+
pΓ1

ρ

∂ρ

∂x

]
= 0 (7.39)

100 Chapter 7. Euler Equations: Theory

0.2

0.4

0.6

0.8

1.0
ρ

0.0

0.2

0.4

0.6

0.8

u

0.0 0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

p

Figure 7.1: Evolution following from an initial discontinuity at x = 0.5. These par-
ticular conditions are called the Sod problem, and in general, a setup with two states
separated by a discontinuity is called a shock-tube problem. We see three waves carry-
ing changes in the solution.
Ï hydro_examples: riemann-sod.py

https://github.com/zingale/hydro_examples/blob/master/compressible/riemann-sod.py

7.2—The Riemann problem 101

i i+ 1
qi+1/2

λ(−) = u− c λ(◦) = u λ(+) = u+ c

L
(ρL, uL, pL)

L∗
(ρ?L, u?, p?)

R∗

R
(ρR, uR, pR)

(ρ?R, u?, p?)

Figure 7.2: The wave structure and 4 distinct regions for the Riemann problem. Time
can be thought of as the vertical axis here, so we see the waves moving outward from
the interface.

This gives a system:
qst + As(qs)qsx = 0 (7.40)

where

As =

u ρ 0

c2/ρ u 1
ρ

∂p
∂s

∣∣∣
ρ

0 0 u

 (7.41)

The eigenvalues of As are again u, u− c, and u + c. The right eigenvectors are**

r(−)s =

1
−c/ρ

0

 r(◦)s =

1
0

−c2/ps

 r(+)

s =

1
c/ρ

0

 (7.42)

Here, we define ps ≡ ∂p/∂s|ρ. Since the jump in qs is proportional to these eigen-
vectors, we see that entropy does not change across the left, (−), and right, (+),
waves.

Consider the (+) wave, which moves at a speed λ(+) = u + c. Across this wave, the
characteristic variable w(+) will jump, but the others will not. Similarly, w(+) will be
constant across the (−) wave. So we can use this constancy to tell us how the evolu-
tion behaves across that wave. The constancy of the middle and right characteristic

**Again, see the SymPy Jupyter notebook:Ï hydro_examples: euler.ipynb

https://github.com/zingale/hydro_examples/blob/master/compressible/euler.ipynb

102 Chapter 7. Euler Equations: Theory

variables across the left wave gives us the conditions (using our original primitive
variable system):

l(+) · dq = 0 (7.43)

l(◦) · dq = 0 (7.44)

or

(
0 ρ

2c
1

2c2

)

dρ

du
dp

 = 0

(
1 0 − 1

c2

)

dρ

du
dp

 = 0 (7.45)

Expanding these, we have the system:

du +
1
ρc

dp = 0 (7.46)

dρ− 1
c2 dp = 0 (7.47)

Defining the Lagrangian sound speed, C ≡ ρc, and the specific volume, τ = 1/ρ, we
can rewrite this system as:

du = −dp
C

, dτ = −dp
C2 across the left wave (7.48)

Similar arguments would give the condition across the right wave as:

du =
dp
C

, dτ = −dp
C2 across the right wave (7.49)

These are completely general at this point. Note that the condition of the second
wave, dτ/dp is essentially the definition of the adiabatic index Γ1, dp/p− Γ1dρ/ρ =

0 for constant entropy. Finding the solution across the rarefaction then involves
integrating the system from pl,r to p⋆, where l, r is the original left or right state,
depending on which wave you are considering. Coupled with this, we need our
equation of state to provide C = C(τ, p). These solutions are called the Riemann
invariants.

Considerable simplification can be made if we assume a gamma-law gas. The eigen-
system with entropy showed us that entropy is constant across the solution. This
allows us to write our equation of state as:

p = Kργ (7.50)

where K is a constant that depends on the entropy, and do the integrals analytically.

7.2—The Riemann problem 103

Exercise 7.5

Assume a gamma-law gas, then you only need to integrate a single equa-
tion to find the solution across the left rarefaction:

u = −
∫ dp

ρc
(7.51)

where c =
√

γp/ρ. Using p = Kργ, show that

u +
2c

γ− 1
= constant across the left rarefaction (7.52)

This allows you to link the state to the left of the rarefaction to the star
state:

uL +
2cL

γ− 1
= u⋆ +

2c⋆
γ− 1

(7.53)

and
pL

ρ
γ
L
=

p⋆
ρ

γ
⋆

(7.54)

from our constant-entropy equation of state. Together, show that this
gives:

u⋆,L = uL +
2cL

γ− 1

[
1−

(
p⋆
pL

)(γ−1)/2γ
]

(7.55)

A similar construction can be done for the right rarefaction, yielding:

u⋆,R = uR −
2cR

γ− 1

[
1−

(
p⋆
pR

)(γ−1)/2γ
]

(7.56)

For a general equation of state, there is not a closed form, but we would need to
integrate our system to get u⋆ = u(p⋆) and ρ⋆,s = 1/τ(p⋆).

We’ll denote the solution across the left rarefaction as u⋆ = urare
L (p⋆) and across the

right rarefaction as u⋆ = urare
R (p⋆).

7.2.2 Shocks

Entropy is not constant across a shock—there is dissipation, so we need a different
way to connect the states across the shock. As with Burgers’ equation, we can under-
stand the shock by looking at the Rankine-Hugoniot jump conditions. There will be
one condition for each of our conservation laws, and together they tell us the speed
of the shock and how density and pressure jump across it.

104 Chapter 7. Euler Equations: Theory

The Rankine-Hugoniot conditions are:

F(U ⋆)− F(U s)

U ⋆ − U s
= S (7.57)

where S is the shock speed. It is easiest to work in the frame of the shock. If the
shock speed is S, then we define the velocity in the shock frame as:

ûs = us − S (7.58)

û⋆ = u⋆ − S (7.59)

and the Rankine-Hugoniot conditions become:

F(Û ⋆)− F(Û s)

Û ⋆ − Û s
= 0 (7.60)

For the one-dimensional system of Euler equations, we have the conditions:

ρ⋆û⋆ = ρsûs (7.61)

ρ⋆û2
⋆ + p⋆ = ρsû2

s + ps (7.62)

ρ⋆û⋆e⋆ +
1
2

ρ⋆û3
⋆ + û⋆p⋆ = ρsûses +

1
2

ρsû3
s + ûs ps (7.63)

Our goal is to find how each variable jumps across the shock. We’ll work this out for
the general EOS case, following the ideas in [25].

Starting with the mass flux, we can express:

û⋆ =
ρs

ρ⋆
ûs (7.64)

and then insert this into the momentum equation to get:

ρ2
s

(
1
ρs
− 1

ρ⋆

)
û2

s = p⋆ − ps (7.65)

Introducing compact notation for the jump across the shock:

[q] ≡ q⋆ − q (7.66)

we have:

−[τ] = [p]
ρ2

s û2
s

(7.67)

We now introduce the mass flux, Ws. For a shock separating L/L⋆ (the 1-shock),
mass will be moving through the shock to the right, so, in the frame of the shock, the
mass flux is

WL ≡ ρLûL = ρ⋆û⋆ (7.68)

7.2—The Riemann problem 105

Likewise, for a shock separating R/R⋆ (the 3-shock), mass will move to the left
passing through the shock, and in the frame of the shock, the mass flux is

WR ≡ −ρRûR = −ρ⋆û⋆ (7.69)

Thus, our first jump condition becomes

−[τ] = [p]
W2

s
(7.70)

Next, going back to the momentum equation, we can substitute in the mass flux. For
the left (1-shock), we have:

WLû⋆ + p⋆ = WLûL + pL (7.71)

giving

[u] = − [p]
WL

(7.72)

where we recognized that û⋆ − ûL = u⋆ − uL = [u], since the shock speed is the same
for u⋆ and u.

Likewise, for the right (3-shock), we have:

−WRû⋆ + p⋆ = −WRûR + pR (7.73)

giving

[u] =
[p]
WR

(7.74)

The last jump condition is for energy. Since all the terms in the energy equation are
proportional to velocity, there will be no sign difference between the left and right
shock jump conditions. We start by introducing the mass flux:

Wse⋆ +
1
2

Wsû2
⋆ +

Ws

ρ⋆
p⋆ = Wses +

1
2

Wsû2
s +

Ws

ρs
ps (7.75)

The mass flux cancels, leaving

[e] +
p⋆
ρ⋆
− ps

ρs
+

1
2
(
û2
⋆ − û2

s
)
= 0 (7.76)

getting rid of the velocities using û2
⋆ = W2

s /ρ2
⋆ and û2

s = W2
s /ρ2

s , we have:

[e] +
p⋆
ρ⋆
− ps

ρs
+

1
2

W2
s

(
1
ρ2
⋆
− 1

ρ2
s

)
= 0 (7.77)

Then introducing W2
s = −[p]/[τ], and after a lot of algebra, we arrive at:

[e] = − p⋆ + ps

2
[τ] (7.78)

106 Chapter 7. Euler Equations: Theory

Some sources write p̄ ≡ (p⋆ + ps)/2.

To summarize, our jump conditions across the shock are:

[τ] = − [p]
W2

s
(7.79)

[u] = ∓ [p]
Ws

‘−’ for left, ‘+’ for right (7.80)

[e] = − p⋆ + ps

2
[τ] (7.81)

As with the rarefaction, the goal is to express this as a function, u⋆ = ushock
s (p⋆). The

general solution procedure is starts with a proposed value for p⋆, then:

1. root find to find ρ⋆ corresponding to the p⋆:

(a) guess a value for ρ⋆

(b) using the equation of state, express e⋆ = e(p⋆, ρ⋆)

(c) use Newton’s method (or another technique) with [e] = − p̄[τ] to find a
correction to ρ⋆

2. compute
1

W2
s
= − [τ]

[p]
(7.82)

3. find the star velocity:

u⋆ = us ∓
[p]
Ws

(7.83)

where we use ‘−’ for the left shock, and ‘+’ for the right shock

The one other piece of information we need is the shock speed. We can get this from
the mass flux, Ws, definition, e.g., WL = ρLûL = ρL(uL − S),:

S = us ∓
Ws

ρs
‘−’ for left, ‘+’ for right (7.84)

This procedure gives us ρ⋆,s, p⋆, and S, the shock speed.

Just as with the rarefaction, considerable simplification can be made if we assume a
gamma-law gas.

Exercise 7.6

Introducing

e =
p
ρ

1
γ− 1

(7.85)

7.2—The Riemann problem 107

into the jump condition for energy, Eq. 7.81, show that we can express
the jump in density in terms of the ratio of pressure, p⋆/ps, as:

ρ⋆,s = ρs

[p⋆
ps
(γ + 1) + (γ− 1)

(γ + 1) + p⋆
ps
(γ− 1)

]
(7.86)

Now, compute the mass flux, Ws starting with

W2
s = − [p]

[τ]
(7.87)

use the γ-law equation of state and show that

W2
s =

1
2

psρs

[(
p⋆
ps

)
(γ + 1) + (γ− 1)

]
(7.88)

With this, show that the star velocity is:

u⋆ = us ± c
[

2
γ(γ− 1)

]1/2 1− p⋆
ps(

p⋆
ps

γ+1
γ−1 + 1

)1/2 (7.89)

with ‘+‘ for the left shock and ‘−‘ for the right shock. Also show that the
shock speed is:

S = us ∓ c
[(

p⋆
ps

)
γ + 1

2γ
+

γ− 1
2γ

]1/2

(7.90)

with the ‘−’ or the left shock and the ‘+’ for the right shock.

7.2.3 Finding the Star State

The left and right states are connected to the state in the star region by a Hugoniot
curve—this is a curve in the u-p plane that shows all of the possible states one can
reach from the current state through either a shock or rarefaction. There are two such
curves, one corresponding to the left and one to the right state:

u⋆,L(p) =

{
ushock
⋆,L (p) p > pL

urare
⋆,L (p) p ≤ pL

u⋆,r(p) =

{
ushock
⋆,R (p) p > pR

urare
⋆,R (p) p ≤ pR

(7.91)

The solution to the Riemann problem is the point in the u-p plane where these two
curves intersect, e.g., we solve for p⋆ in:

u⋆,l(p⋆)− u⋆,r(p⋆) = 0 (7.92)

This is equivalent to saying that pressure and velocity do not jump across the contact
wave.

108 Chapter 7. Euler Equations: Theory

For a gamma-law equation of state, using the results from the exercises, we have:

u⋆,s(p⋆) =

us ± 2c
γ−1

[
1−

(
p⋆
ps

)(γ−1)/2γ
]

p⋆ ≤ ps

us ± c
[

2
γ(γ−1)

]1/2 1− p⋆
ps(

p⋆
ps

γ+1
γ−1+1

)1/2 p⋆ > ps

(7.93)

Figure 7.3 shows the Hugoniot curves for the Sod problem. Comparing to Figure 7.1,
we see that the right state is linked to the star state with a shock while the left state
is linked to the star state with a rarefaction.

Exercise 7.7

Download the code demonstrated in Figure 7.3 and experiment with dif-
ferent initial conditions to see how the solution changes based on the
states. Try to create initial states that give rise to two rarefactions and
a separate set of states that give rise to two shocks.

7.2.4 Complete Solution

To complete the solution, we need to find which of the 4 regions, L, L⋆, R⋆, R we fall
in. For hydrodynamics, we are usually interested only in the solution on the interface,
but we can look along any ray in the x-t plane by defining ξ = (x − xinterface)/t. If
the initial discontinuity is on the interface, then ξ = 0.

Figure 7.4 shows the possible configurations of the waves. Note that the middle
wave is always a contact but the left (1) and right (3) waves can be either a shock
or rarefaction. To find out which region the interface falls in, we simply look at the
speeds.

The first speed to consider is the contact wave, that has a speed of simply Sc = u⋆. If
Sc < ξ, then we are choosing between R and R⋆ states (cases a and b). If Sc > ξ, then
we are choosing between the L and L⋆ states (cases c and d in Figure 7.4)††.

The direction of the contact reduces the problem down to choosing between just two
regions, either L-L⋆ or R-R⋆. This leaves just a single wave to consider: the right wave
for cases a and b; and the left wave for cases c and d. We need the wave speed for
this—it will depend on whether it is a shock or a rarefaction.

For a shock, the wave speed is given by Eq. 7.84. We do the same procedure as before.
For example, for cases a and b, we look at SR, the right-moving shock speed for the

††for the special case where Sc = 0, we usually take the solution to be the average of the L⋆ and R⋆

states. Testing for this explicitly rather than using ≥ in a check is important for maintaining symmetry
(see § 8.9.1).

7.2—The Riemann problem 109

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
p

4

2

0

2

4

6
u leftright

shock
rarefaction

Figure 7.3: The Hugoniot curves corresponding to the Sod problem. The shock and
rarefaction curves are shown. The solution to the Riemann problem is the point where
the curves intersect. The line style of the curve indicates where we are a shock or
rarefaction. Where p > ps, where s ∈ L, R, we have a shock.
Ï hydro_examples: riemann-phase.py

3-wave. If SR > 0, then the interface is in the R⋆ state (case b), while if SR < 0, then
the interface is in the R state (case a). A similar process holds for the left-moving
shock and cases c and d.

For a rarefaction, the relevant speeds are the characteristic speeds on either side of
the rarefaction. We usually talk about the leading part of the rarefaction (the head)
and trailing part (the tail). The corresponding wave speeds are:

• left (1) rarefaction:

– λhead = uL − cL

– λtail = u⋆ − c⋆

• right (3) rarefaction:

– λhead = uR + cR

– λtail = u⋆ + c⋆

The nature of the rarefaction is such that it spreads out, |λhead| > |λtail|. To determine

https://github.com/zingale/hydro_examples/blob/master/compressible/riemann-phase.py

110 Chapter 7. Euler Equations: Theory

L

L R

R

(a)

L

L R

R

(b)

L

L R

R

(c)

L

L R

R

(d)

Figure 7.4: An illustration of the 3 waves emanating from an initial discontinuity (the
origin of the axes). The 4 cases show all possible cases of waves being to the left or
right of the interface (corresponding to the choice ξ = 0). In all cases, the middle wave
is a contact and the left (1) and right (3) waves are either a shock or a rarefaction. The
state on the interface is: R (case a); R⋆ (case b); L⋆ (case c); L (case d).

which state we are in, we look to see where both the head and tail are with respect
to the interface. Figure 7.5 shows the possibilities for a left (1) rarefaction. In case (a),
λhead, λtail < 0, so the L⋆ state is on the interface. In case (c), λhead, λtail > 0, so the L
state is on the interface. Case (b) is more complicated—we have λhead < 0, λtail > 0,
so the rarefaction spans the interface. We need to therefore solve for the state in the
rarefaction itself.

To find the structure inside of a rarefaction, consider some point, (x, t), in the x-t
plane. For an initial discontinuity at the origin, we can imagine a line connecting this
point and the origin, which has the form:

x
t
= u− c (7.94)

7.3 Other thermodynamic equations

At times we will want to use alternate forms of the energy equation. The internal
energy is governed by the first law of thermodynamics. In the absence of any heat

7.3—Other thermodynamic equations 111

λhead λtail

L

L R

R

(a)

λhead λtail

L

L R

R

(b)

λhead λtail

L

L R

R

(c)

Figure 7.5: An illustration of the structure of the left rarefaction wave, for the case
where the contact and right wave are to the right of the interface. Here, we are choosing
between states L and L⋆. In (a), both the head and tail of the rarefaction are to the left
of the interface, so state L⋆ is on the interface. In (c), both the head and tail of the
rarefaction are to the right of the interface, so state L is on the interface. Inbetween,
case (b), shows a rarefaction that spans the interface. For this case, we need to integrate
the Riemann invariants to find the state on the interface.

112 Chapter 7. Euler Equations: Theory

sources, we have:
dq = 0 = de + pd(1/ρ) (7.95)

where e is the specific internal energy. Applying this to a Lagrangian fluid element,
we have:

De
Dt

+ p
D(1/ρ)

Dt
= 0 (7.96)

De
Dt
− p

ρ2
Dρ

Dt
= 0 (7.97)

ρ
De
Dt

+ p∇ ·U = 0 (7.98)

where we used the continuity equation in the last step to eliminate Dρ/Dt. This can
be rewritten by adding e× the continuity equation to give:

∂(ρe)
∂t

+∇ · (ρUe) + p∇ ·U = 0 (7.99)

Notice that internal energy, (ρe) is not a conserved quantity (in particular, the p∇ ·U
term is not in conservative form).

Another energy-like quantity that we can consider is specific enthalpy,

h = e +
p
ρ

(7.100)

Differentiating this, and using the internal energy equation,

Dh
Dt

=
De
Dt
− p

ρ2
Dρ

Dt
+

1
ρ

Dp
Dt

(7.101)

=
p
ρ2

Dρ

Dt
− p

ρ2
Dρ

Dt
+

1
ρ

Dp
Dt

(7.102)

so
ρ

Dh
Dt

=
Dp
Dt

(7.103)

This form is useful for very subsonic flows (see, e.g. [13]), where Dp/Dt = 0, which
then shows that enthalpy is conserved:

∂(ρh)
∂t

+∇ · (ρhU) = 0 (7.104)

(here we added h× the continuity equation to transform from the Lagrangian deriva-
tive to a conservation equation).

We can also look at the temperature evolution. It is interesting to approach this
from both the internal energy and enthalpy equations. Starting with internal energy,
writing it as e(ρ, T), we have:

De
Dt

=
∂e
∂ρ

∣∣∣∣
T

Dρ

Dt
+

∂e
∂T

∣∣∣∣
ρ

DT
Dt

= − p
ρ
∇ ·U (7.105)

7.3—Other thermodynamic equations 113

The specific heat at constant volume is defined as cv = ∂e/∂T|ρ, allowing us to write:

cv
DT
Dt

=

(
∂e
∂ρ

∣∣∣∣
T
− p

ρ

)
∇ ·U (7.106)

If we alternately start with enthalpy, expressing it as h = h(p, T), we have:

Dh
Dt

=
∂h
∂p

∣∣∣∣
T

Dp
Dt

+
∂h
∂T

∣∣∣∣
p

DT
Dt

=
1
ρ

Dp
Dt

(7.107)

The specific heat at constant pressure is defined as cp = ∂h/∂T|p, letting us write:

cp
DT
Dt

=

(
1
ρ
− ∂h

∂p

∣∣∣∣
T

)
Dp
Dt

(7.108)

These two temperature evolution equations are equivalent, but one describes the
evolution in terms of density and the other in terms of pressure. Later, we’ll see
how these can be useful when we approximate the evolution of reactive flow under
constant density or constant pressure behaviors.

Chapter8
Euler Equations: Numerical
Methods

8.1 Introduction

The numerical methods we use for the Euler equations mirror those used with ad-
vection in Ch. 4. The basic process is:

• Reconstruct the state variables to the interfaces.

• Solve the Riemann problem (as described in § 7.2) and construct the fluxes
through the interfaces.

• Perform the conservative update on the state variables.

The Euler equations are much more complicated than linear advection—we already
saw this with the Riemann problem. But we will also see that in different parts of
the algorithm we will use conservative or primitive variables. Additional physics can
enter as source terms, which we’ll see how to add to both the interface states and
conservative update here.

8.2 Reconstruction of interface states

We will solve the Euler equations using a high-order Godunov method—a finite vol-
ume method whereby the fluxes through the interfaces are computed by solving the
Riemann problem for our system. The finite-volume update for our system appears
as:

U n+1
i = U n

i +
∆t
∆x

(
Fn+1/2

i−1/2
− Fn+1/2

i+1/2

)
(8.1)

git version: ae2370a3e0d5 . . . 115

116 Chapter 8. Euler Equations: Numerical Methods

i i+ 1i+ 1/2

U
n+1/2
i+1/2,RU

n+1/2
i+1/2,L

Ui Ui+1

F (U
n+1/2
i+1/2)

Figure 8.1: The left and right states at interface i + 1/2. The arrow indicates the flux
through the interface, as computed by the Riemann solver using these states as input.

This says that each of the conserved quantities in U change only due to the flux of
that quantity through the boundary of the cell.

Instead of approximating the flux itself on the interface, we find an approximation
to the state on the interface, U n+1/2

i−1/2
and U n+1/2

i+1/2
and use this with the flux function to

define the flux through the interface:

Fn+1/2

i−1/2
= F(U n+1/2

i−1/2
) (8.2)

Fn+1/2

i+1/2
= F(U n+1/2

i+1/2
) (8.3)

To find this interface state, we predict left and right states at each interface (centered
in time), which are the input to the Riemann solver. The Riemann solver will then
look at the characteristic wave structure and determine the fluid state on the interface,
which is then used to compute the flux. This is illustrated in Figure 8.1.

Finally, although we use the conserved variables for the final update, in constructing
the interface states it is often easier to work with the primitive variables. These
have a simpler characteristic structure. The interface states in terms of the primitive
variables can be converted into the interface states of the conserved variables through
a simple algebraic transformation,

U n+1/2

i+1/2,L = U (qn+1/2

i+1/2,L) (8.4)

As we saw with linear advection in § 5.1, at the start of a timestep, each zones contains
cell-averages. Consider a cell average quantity, qi. Constructing the interface states
requires reconstructing the cell-average data as a continuous function, q(x), defined
for each cell. This polynomial is only piecewise continuous, since each cell has its own
q(x). Standard choices are piecewise constant,

q(x) = qi (8.5)

8.2—Reconstruction of interface states 117

piecewise linear,

q(x) = qi +
∆qi

∆x
(x− xi) (8.6)

or piecewise parabolic,

q(x) = α(x− xi)
2 + β(x− xi) + γ (8.7)

where in each case, the average of q(x) over the cell gives qi. Most of the complexity
of the method is then figuring out the coefficients of the polynomial.

Characteristic tracing is then done under this polynomial to see how much of each
characteristic quantity comes to the interface over the timestep. The jump in the prim-
itive variables is projected into the characteristic variables, and only jumps moving
toward the interface are included in our reconstruction. We look at several methods
below that build off of these ideas below.

8.2.1 Piecewise constant

The simplest possible reconstruction of the data is piecewise constant. This is what
was done in the original Godunov method [37]. For the interface marked by i + 1/2,
the left and right states on the interface are simply:

U i+1/2,L = U i (8.8)

U i+1/2,R = U i+1 (8.9)

This does not take into account in any way how the state U may be changing through
the cell. As a result, it is first-order accurate in space, and since no attempt was made
to center it in time, it is first-order accurate in time.

8.2.2 Piecewise linear

For higher-order reconstruction, we first convert from the conserved variables, U ,
to the primitive variables, q. These have a simpler characteristic structure, making
them easier to work with. Here we consider piecewise linear reconstruction—the
cell average data is approximated by a line with non-zero slope within each cell.
Figure 8.2 shows the piecewise linear reconstruction of some data.

Consider constructing the left state at the interface i + 1/2 (see Figure 8.1). Just like
for the advection equation, we do a Taylor expansion through ∆x/2 to bring us to
the interface, and ∆t/2 to bring us to the midpoint in time. Starting with qi, the cell-
centered primitive variable, expanding to the right interface (to create the left state

118 Chapter 8. Euler Equations: Numerical Methods

ii− 1 i+ 1i− 2 i+ 2

Figure 8.2: Piecewise linear reconstruction of the cell averages. The dotted line shows
the unlimited center-difference slopes and the solid line shows the limited slopes.

there) gives:

qn+1/2

i+1/2,L = qn
i +

∆x
2

∂q
∂x

∣∣∣∣
i
+

∆t
2

∂q
∂t

∣∣∣∣
i︸︷︷︸

=−A∂q/∂x

+ . . . (8.10)

= qn
i +

∆x
2

∂q
∂x

∣∣∣∣
i
− ∆t

2

(
A

∂q
∂x

)

i
(8.11)

= qn
i +

1
2

[
1− ∆t

∆x
Ai

]
∆qi (8.12)

where ∆qi is the reconstructed slope of the primitive variable in that cell (similar to
how we compute it for the advection equation). We note that the terms truncated in
the first line are O(∆x2) and O(∆t2), so our method will be second-order accurate in
space and time.

As with the advection equation, we limit the slope such that no new minima or
maxima are introduced. Any of the slope limiters used for linear advection apply
here as well. We represent the limited slope as ∆qi.

We can decompose A∆q in terms of the left and right eigenvectors and sum over
all the waves that move toward the interface. First, we recognize that A = RΛL and
recognizing that the ‘1’ in Eq. 8.12 is the identity, I = LR, we rewrite this expression
as:

qn+1/2

i+1/2,L = qn
i +

1
2

[
RL− ∆t

∆x
RΛL

]

i
∆qi (8.13)

We see the common factor of L∆q. We now write this back in component form.
Consider:

RΛL∆q =

r(−)1 r(◦)1 r(+)
1

r(−)2 r(◦)2 r(+)
2

r(−)3 r(◦)3 r(+)
3

λ(−)

λ(◦)

λ(+)

l(−)1 l(−)2 l(−)3

l(◦)1 l(◦)2 l(◦)3

l(+)
1 l(+)

2 l(+)
3

∆ρ

∆u

∆p

(8.14)

8.2—Reconstruction of interface states 119

Starting with L∆q, which is a vector with each component the dot-product of a left
eigenvalue with ∆q, we have

RΛL∆q =

r(−)1 r(◦)1 r(+)
1

r(−)2 r(◦)2 r(+)
2

r(−)3 r(◦)3 r(+)
3

λ(−)

λ(◦)

λ(+)

l(−) · ∆q

l(◦) · ∆q

l(+) · ∆q

(8.15)

Next we see that multiplying this vector by Λ simply puts the eigenvalue with its
respective eigenvector in the resulting column vector:

RΛL∆q =

r(−)1 r(◦)1 r(+)
1

r(−)2 r(◦)2 r(+)
2

r(−)3 r(◦)3 r(+)
3

λ(−) l(−) · ∆q

λ(◦) l(◦) · ∆q

λ(+) l(+) · ∆q

(8.16)

Finally, the last multiply results in a column vector:

RΛL∆q =

r(−)1 λ(−) l(−) · ∆q + r(◦)1 λ(◦) l(◦) · ∆q + r(+)
1 λ(+) l(+) · ∆q

r(−)2 λ(−) l(−) · ∆q + r(◦)2 λ(◦) l(◦) · ∆q + r(+)
2 λ(+) l(+) · ∆q

r(−)3 λ(−) l(−) · ∆q + r(◦)3 λ(◦) l(◦) · ∆q + r(+)
3 λ(+) l(+) · ∆q

(8.17)

We can rewrite this compactly as:

∑
ν

λ(ν)(l(ν) · ∆q)r(ν) (8.18)

where we use ν to indicate which wave we are summing over. A similar expansion
is used for RL∆q. In fact, any vector can be decomposed in this fashion:

χ = Iχ = RLχ = ∑
ν

(l(ν) · χ)r(ν) (8.19)

And then it is easy to see that the above manipulations for A∆q can be expressed as:

A∆q = A ∑
ν

(l(ν) · ∆q)r(ν) = ∑
ν

(l(ν) · ∆q)Ar(ν) = ∑
ν

(l(ν) · ∆q)λ(ν)r(ν) (8.20)

where we used Ar(ν) = λ(ν)r(ν). The quantity (l(ν) · ∆q) that shows up here is the
projection of the vector ∆q into the characteristic variable carried by wave ν. This
sum shows, as discussed earlier, that each wave carries a jump in the characteristic
variable, with the jump in the primitive variables proportion to the right eigenvector,
r(ν).

The resulting vector for the left state is:

qn+1/2

i+1/2,L = qn
i +

1
2 ∑

ν;λ(ν)≥0

[
1− ∆t

∆x
λ
(ν)
i

]
(l(ν)i · ∆qi)r

(ν)
i (8.21)

120 Chapter 8. Euler Equations: Numerical Methods

Note that we make a slight change here, and only include a term in the sum if its
wave is moving toward the interface (λ(ν) ≥ 0). The quantity ∆tλ(ν)/∆x inside the
brackets is simply the CFL number for the wave ν.

Starting with the data in the i + 1 zone and expanding to the left, we can find the
right state on the i + 1/2 interface:

qn+1/2

i+1/2,R = qn
i+1 −

1
2 ∑

ν;λ(ν)≤0

[
1 +

∆t
∆x

λ
(ν)
i+1

]
(l(ν)i+1 · ∆qi+1)r

(ν)
i+1 (8.22)

A good discussion of this is in Miller & Colella [53] (Eq. 85). This expression is
saying that each wave carries a jump in r(ν) and only those jumps moving toward
the interface contribute to our interface state. This restriction of only summing up
the waves moving toward the interface is sometimes called characteristic tracing. This
decomposition in terms of the eigenvectors and eigenvalues is commonly called a
characteristic projection. In terms of an operator, P, it can be expressed as:

Pχ = ∑
ν

(l(ν).χ)r(ν) (8.23)

Exercise 8.1

Show that Pq = q, using the eigenvectors corresponding to the primitive
variable form of the Euler equations.

In the literature, sometimes a ‘>’ or ‘<’ subscript on P is used to indicate the char-
acteristic tracing.

We could stop here, but Colella & Glaz [25] (p. 278) argue that the act of decomposing
A in terms of the left and right eigenvectors is a linearization of the quasi-linear
system, and we should minimize the size of the quantities that are subjected to this
characteristic projection. To accomplish this, they suggest subtracting off a reference
state. Saltzman (Eq. 8) further argues that since only jumps in the solution are used
in constructing the interface state, and that the characteristic decomposition simply
adds up all these jumps, we can subtract off the reference state and project the result.
In other words, we can write:

qn+1/2

i+1/2,L − qref = qn
i − qref +

1
2

[
1− ∆t

∆x
Ai

]
∆qi (8.24)

Then we subject the RHS to the characteristic projection—this tells us how much of
the quantity qn+1/2

i+1/2,L − qref reaches the interface. Colella & Glaz (p. 278) and Colella
(Eq. 2.11) suggest

qref = q̃i,L ≡ qn
i +

1
2

[
1− ∆t

∆x
max(λ(+)

i , 0)
]

∆qi (8.25)

8.2—Reconstruction of interface states 121

where λ(+) is the fastest eigenvalue, and thus will see the largest portion of the
linear profiles. Physically, this reference state represents the jump carried by the
fastest wave moving toward the interface. Then,

qn+1/2

i+1/2,L − q̃i,L =
1
2

∆t
∆x

[
max(λ(+)

i , 0)−Ai

]
∆qi (8.26)

and projecting this RHS (see Colella & Glaz Eq. 43; Miller & Colella Eq. 87), and
isolating the interface state, we have

qn+1/2

i+1/2,L = q̃i,L +
1
2

∆t
∆x ∑

ν;λ(ν)≥0

l(ν)i ·
[
max(λ(+)

i , 0)−Ai

]
∆qi r(ν)i (8.27)

= q̃i,L +
1
2

∆t
∆x ∑

ν;λ(ν)≥0

[
max(λ(+)

i , 0)− λ
(ν)
i

]
(l(ν)i · ∆qi) r(ν)i (8.28)

This is equivalent to the expression in Saltzman [66] (p. 161, first column, second-
to-last equation) and Colella [24] (p. 191, the group of expressions at the end)*. The
corresponding state to the right of this interface is:

qn+1/2

i+1/2,R = q̃i+1,R +
1
2

∆t
∆x ∑

ν;λ(ν)≤0

[
min(λ(−)

i+1 , 0)− λ
(ν)
i+1

]
(l(ν)i+1 · ∆qi+1) r(ν)i+1 (8.29)

where now the reference state captures the flow from the i + 1 zone moving to the
left to this interface (hence the appearance of λ(−), the leftmost eigenvalue):

q̃i+1,R = qi+1 −
1
2

[
1 +

∆t
∆x

min(λ(−)
i+1 , 0)

]
∆qi+1 (8.30)

Side note: the data in zone i will be used to construct the right state at i − 1/2 (the
left interface) and the left state at i + 1/2 (the right interface) (see Figure 8.3). For this
reason, codes usually compute the eigenvectors/eigenvalues for that zone and then
compute qn+1/2

i−1/2,R together with qn+1/2

i+1/2,L in a loop over the zone centers.

8.2.3 Piecewise parabolic

The piecewise parabolic method uses a parabolic reconstruction in each cell. This
is more accurate than the linear reconstruction. Figure 8.4 shows the reconstructed
parabolic profiles within a few cells. Since the original PPM paper [28], there have
been many discussions of the method, with many variations. Here we focus on
the presentation by Miller & Colella [53], since that is the most straightforward.
Note: even though a parabolic profile could be third-order accurate, the temporal
discretization and prediction in this method is still only second-order.

*Since the combination l(ν) · ∆q appears so frequently, some sources represent this as β(ν) and then
write the interface states as a linear combination of the β’s. Some variation in the literation, depending
on whether ρ or τ = 1/ρ is used as a primitive variable

122 Chapter 8. Euler Equations: Numerical Methods

i

qiq
n+1/2
i−1/2,R q

n+1/2
i+1/2,L

Figure 8.3: The two interface states that are constructed using qi as the starting point.

ii− 1 i+ 1i− 2 i+ 2

Figure 8.4: Piecewise parabolic reconstruction of the cell averages. The dotted line
shows the unlimited parabolas—note how they touch at each interface, since the inter-
face values come from the same interpolant initially. The solid line shows the limited
parabolas.

Miller & Colella give an excellent description of how to take the results for piece-
wise linear reconstruction and generalize it to the case of PPM [28] (see Eqs. 88-90).
Starting with Eq. 8.24, we can write this (after the characteristic projection) as

qn+1/2

i+1/2,L = q̃+ − ∑
ν;λ(ν)≥0

l(ν)i ·
{

q̃+ −
[

qn
i +

1
2

(
1− ∆t

∆x
λ
(ν)
i

)
∆qi

]}
r(ν)i (8.31)

Miller & Colella rewrite the portion inside the [. . .] recognizing that (similar to M&C
Eq. 88, but for the i + 1/2, L interface):

qn
i +

1
2

(
1− ∆t

∆x
λ
(ν)
i

)
∆qi ≈

1
λ∆t

∫ xi+1/2

xi+1/2−λ∆t
q(x)dx (8.32)

where q(x) is the reconstructed functional form of q in the zone.

8.2—Reconstruction of interface states 123

i i+1

σ
(ν)
i ∆x

I(ν)
+

Figure 8.5: Integration under the parabolic profile. For each of the waves, σ(ν) is the
fraction of the cell that they cross in a timestep, and σ(ν)∆x = λ(ν)∆t is the distance
they can travel. Here we are integrating under the parabola to the right interface of

cell i to define I (ν)+ (this is indicated by the shaded region). The I (ν)+ carried by this
wave will be added to those carried by the other waves to form the left state at interface
i + 1/2.

Exercise 8.2

Show that this is exactly true for a linear reconstruction of q(x), i.e.,
q(x) = qi + (∂q/∂x)(x− xi).

The integral on the right represents the average of q that can reach the right interface
of the cell i over timestep ∆t, moving at the wavespeed λ. This suggests that we can
replace the linear reconstruction of q with a parabolic one, and keep our expressions
for the interface states.

In particular, we define

I (ν)+ (qi) =
1

σ(ν)∆x

∫ xi+1/2

xi+1/2−σ(ν)∆x
q(x)dx (8.33)

with σ(ν) = |λ(ν)|∆t/∆x (see Almgren et al. Eq. 31) (see Figure 8.5). Then

qn+1/2

i+1/2,L = q̃+ − ∑
ν;λ(ν)≥0

l(ν)i ·
(

q̃+ − I (ν)+ (qi)
)

r(ν)i (8.34)

Miller & Colella choose the reference state as

q̃+ =

{
I (+)
+ (qi) if u + c > 0

qi otherwise
(8.35)

where the superscript (+) on I indicates that the fastest eigenvalue (λ(+) = u + c)
is used. This is similar in spirit to Eq. 8.25. Note: in the original PPM paper, if the

124 Chapter 8. Euler Equations: Numerical Methods

wave is not approaching the interface, instead of using the cell-average, qi, they use
the limit of the quadratic interpolant. In contrast to the above, the Castro paper [2]
just uses qi for the reference state regardless of whether the wave is moving toward
or away from the interface. Note that if the system were linear, then the choice of
reference state would not matter.

To finish the reconstruction, we need to know the parabolic form of q(x). Here, we
do the reconstruction from the original PPM paper:

q(x) = q− + ξ(x) (∆q + q6(1− ξ(x))) (8.36)

with ∆q = q+ − q−, and q−, q+ the values of the polynomial on the left and right
edges, respectively, of the current cell, and

q6 ≡ 6
[

qi −
1
2
(q− + q+)

]
(8.37)

and
ξ(x) =

x− xi−1/2

∆x
(8.38)

To complete the description, we need to determine the parameters of the parabola.
The values of q− and q+ are computed and limited as described in the original PPM
paper. With this definition, we can do the integral I+:

I (ν)+ (qi) = q+,i −
σ
(ν)
i
2

[
∆qi − q6,i

(
1− 2

3
σ
(ν)
i

)]
(8.39)

Figure 8.5 illustrates the process of integrating under the parabolic profile.

Exercise 8.3

Show that q(x) is a conservative interpolant. That is

1
∆x

∫ xi+1/2

xi−1/2

q(x)dx = qi (8.40)

You can also see that the average over the left half of the zone is qi − 1
4 ∆q

and the average over the right half of the zone is qi +
1
4 ∆q. This means

that there are equal areas between the integral and zone average on the
left and right sides of the zone. This can be seen by looking at Figure 8.4.

Aside: Note that this characteristic projection of q̃+ − I (ν)+ is discussed in
the original PPM paper in the paragraph following their Eq. 3.5. They
do not keep things in this form however, and instead explicitly multiply

8.2—Reconstruction of interface states 125

out the l · [. . .]r terms to arrive at their Eq. 3.6. For example, starting with
Eq. 8.34, we can write the left velocity state as (leaving off the i subscripts
on the vectors):

un+1/2

i+1/2,L = ũ+ −∑
ν

l(ν) · (q̃+ − I (ν)+ (q)) r(ν)︸︷︷︸
only the
u ‘slot′

(8.41)

(where, as above, the ∼ indicates the reference state). Here the r eigen-
vector on the end is representative—we only pick the row corresponding
to u in the q vector (in our case, the second row).

Putting in the eigenvectors and writing out the sum, we have:

un+1/2

i+1/2,L = ũ+ −
(

0 − ρ
2c

1
2c2

)

ρ̃+ − I (−)+ (ρ)

ũ+ − I (−)+ (u)
p̃+ − I (−)+ (p)

1
−c/ρ

c2

−
(

1 0 − 1
c2

)

ρ̃+ − I (◦)+ (ρ)

ũ+ − I (◦)+ (u)
p̃+ − I (◦)+ (p)

1
0
0

−
(

0 ρ
2c

1
2c2

)

ρ̃+ − I (+)
+ (ρ)

ũ+ − I (+)
+ (u)

p̃+ − I (+)
+ (p)

1
c/ρ

c2

 (8.42)

Here again we show the entire right eigenvector for illustration, but only
the element that comes into play is drawn in black. This shows that the
second term is 0—the contact wave does not carry a jump in velocity.
Multiplying out l(ν) · (q̃+ − I (ν)+) we have:

un+1/2

i+1/2,L = ũ+ −
1
2

[
(ũ+ − I (−)+ (u))− p̃+ − I (−)+ (p)

C

]

− 1
2

[
(ũ+ − I (+)

+ (u)) +
p̃+ − I (+)

+ (p)
C

]
(8.43)

where C is the Lagrangian sound speed (C =
√

γpρ). Defining

β(+) = − 1
2C

[
(ũ+ − I (+)

+ (u)) +
p̃+ − I (+)

+ (p)
C

]
(8.44)

β(−) = +
1

2C

[
(ũ+ − I (−)+ (u))− p̃+ − I (−)+ (p)

C

]
(8.45)

we can write our left state as:

un+1/2

i+1/2,L = ũ+ + C(β(+) − β(−)) (8.46)

126 Chapter 8. Euler Equations: Numerical Methods

This is Eqs. 3.6 and 3.7 in the PPM paper. Note that in their construction
appears to use the reference state in defining the Lagrangian sound speed
(in their β expressions is written as C̃). This may follow from the comment
before Eq. 3.6, “modified slightly for the present application”. Similarly,
the expressions for ρL and pL can be written out.

Similar expressions can be derived for the right state at the left interface of the zone
(qn+1/2

i−1/2,R). Here, the integral under the parabolic reconstruction is done over the
region of each wave that can reach the left interface over our timestep:

I (ν)− (q) =
1

σ(ν)∆x

∫ xi−1/2+σ(ν)∆x

xi−1/2

q(x)dx (8.47)

The right state at i− 1/2 using zone i data is:

qn+1/2

i−1/2,R = q̃− − ∑
ν;λν≤0

l(ν)i ·
(

q̃− − I (ν)− (qi)
)

r(ν)i (8.48)

where the reference state is now:

q̃− =

{
I (−)− (qi) if u− c < 0

qi otherwise
(8.49)

where the (−) superscript on I indicates that the most negative eigenvalue (λ− =

u− c) is used. The integral I (ν)− (q) can be computed analytically by substituting in
the parabolic interpolant, giving:

I (ν)− (qi) = q−,i +
σ
(ν)
i
2

[
∆qi + q6,i

(
1− 2

3
σ
(ν)
i

)]
(8.50)

This is equivalent to Eq. 31b in the Castro paper.

New PPM limiters

Recent work [27] has formulated improved limiters for PPM that do not clip the
profiles at extrema. This only changes the limiting process in defining q+ and q−,
and does not affect the subsequent parts of the algorithm.

8.2.4 Flattening and contact steepening

Shocks are self-steepening (this is how we detect them in the Riemann solver—we
look for converging characteristics). This can cause trouble with the methods here,
because the shocks may become too steep.

Flattening is a procedure to add additional dissipation at shocks, to ensure that they
are smeared out over ∼ 2 zones. The flattening procedure is a multi-dimensional

8.2—Reconstruction of interface states 127

operation that looks at the pressure and velocity profiles and returns a coefficient,
χ ∈ [0, 1] that multiplies the limited slopes. The convention most sources use is that
χ = 1 means no flattening (the slopes are unaltered), while χ = 0 means complete
flattening—the slopes are zeroed, dropping us to a first-order method. See for exam-
ple in Saltzman [66]. Once the flattening coefficient is determined, the interface state
is blended with the cell-centered value via:

qn+1/2

i+1/2,{L,R} ← (1− χ)qi + χqn+1/2

i+1/2,{L,R} (8.51)

Note that the flattening algorithm increases the stencil size of piecewise-linear and
piecewise-parabolic reconstruction to 4 ghost cells on each side. This is because
the flattening procedure itself looks at the pressure 2 zones away, and we need to
construct the flattening coefficient in both the first ghost cell (since we need the
interface values there) and the second ghost cell (since the flattening procedure looks
at the coefficients in its immediate upwinded neighbor).

In contrast to shocks, contact waves do not steepen (they are associated with the mid-
dle characteristic wave, and the velocity does not change across that, meaning there
cannot be any convergence). The original PPM paper advocates a contact steepening
method to artificially steepen contact waves. While it shows good results in 1-d, it
can be problematic in multi-dimensions.

Overall, the community seems split over whether this term should be used. Many
people advocate that if you reach a situation where you think contact steepening may
be necessary, it is more likely that the issue is that you do not have enough resolution.

8.2.5 Limiting on characteristic variables

Some authors (see for example, [76] Eqs. 37, 38) advocate limiting on the characteristic
variables rather than the primitive variables. The characteristic slopes for the quantity
carried by the wave ν can be found from the primitive variables as:

∆w(ν) = l(ν) · ∆q (8.52)

any limiting would then be done to ∆w(ν) and the limited primitive variables would
be recovered as:

∆q = ∑
ν

∆w(ν)
r(ν) (8.53)

(here we use an overline to indicate limiting).

This is attractive because it is more in the spirit of the linear advection equation and
the formalism that was developed there. A potential downside is that when you limit
on the characteristic variables and convert back to the primitive, the primitive vari-
ables may now fall outside of valid physical ranges (for example, negative density).

128 Chapter 8. Euler Equations: Numerical Methods

i− 3/2 i− 1/2 i+ 1/2 i+ 3/2 i+ 5/2i− 1 i i+ 1 i+ 2

Figure 8.6: The Riemann wave structure resulting from the separate Riemann problems
at each interface. For each interface, we find the state on the interface and use this to
evaluate the flux through the interface.

8.3 Riemann solvers

Once the interface states are created, the Riemann solver is called. This returns the
solution at the interface:

qn+1/2

i+1/2
= R(qn+1/2

i+1/2,L, qn+1/2

i+1/2,R) (8.54)

This is done for every interface, as illustrated in Figure 8.6.

As discussed in § 7.2.4, we need to determine which state is on our interface to
compute the fluxes through the interface. The full solution of the Riemann problem
can be quite expensive, so in practice, approximate Riemann solvers are used to speed
the computation. Different Riemann solvers will have different approximations for
finding the speeds of the left, center, and right wave, and evaluating the star state.
In the ‘star’ region, only ρ jumps across the middle (contact) wave, the pressure
and velocity are constant across that wave (see r(◦)). We determine the state in the
star region (ρ∗l , ρ∗r , u∗, p∗) by using the jump conditions for the Euler equations or
the Riemann invariants, as shown in § 7.2.3. Some approximate Riemann solvers
assume that both waves are shocks or both are rarefactions, aimplying the form of
the equation that must be solved to find p⋆.

Two-shock solvers, like the one in [25] are quite common in astrophyiscs. Figure 8.7
shows the Hugoniot curves for the Sod problem under the 2-shock assumption—they
are quite close to those for the true solution. To further save on cost, approximate
Riemann solvers for general equations of state often include additional thermody-
namic information at the interfaces that overconstrains the system, but can remove
the need to call an expensive equation of state routine in solving for the star state.

An additional approximation concerns rarefactions. Recall that a rarefaction involves
diverging flow—it spreads out with time. Special consideration needs to be taken if
the rarefaction wave spans the interface (a transonic rarefaction, § 7.2.4). In this case,
most approximate Riemann solvers simply linearly interpolate between the left or

8.3—Riemann solvers 129

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
p

4

2

0

2

4

6
u leftright

Figure 8.7: The approximate Hugoniot curves under the 2-shock approximation corre-
sponding to the Sod problem. Also shown as the gray dotted line is the exact Hugoniot
curves (compare to Figure 7.3). We see that the 2-shock approximation does a reason-
able job near the intersection and only diverges significantly for small p (which is where
the solution should really be a rarefaction).
Ï hydro_examples: riemann-2shock.py

right state and the appropriate star state instead of solving for the structure inside
the rarefaction.

With this approximate state, the fluxes are computed as:

Fn+1/2

i+1/2
=

ρn+1/2

i+1/2
un+1/2

i+1/2

ρn+1/2

i+1/2
(un+1/2

i+1/2
)2 + pn+1/2

i+1/2

un+1/2

i+1/2
pn+1/2

i+1/2
/(γ− 1) + 1

2 ρn+1/2

i+1/2
(un+1/2

i+1/2
)3 + un+1/2

i+1/2
pn+1/2

i+1/2

(8.55)

A different class of approximate Riemann solvers (the HLL family) approximate the
fluxes directly instead of approximating the state first. These require estimates of
the wave speeds, and care must be taken to ensure those estimates are valid for
a general equation of state. These wave speeds are then used together with the
Rankine-Hugoniot jump conditions to give the fluxes.

https://github.com/zingale/hydro_examples/blob/master/compressible/riemann-2shock.py

130 Chapter 8. Euler Equations: Numerical Methods

8.4 Conservative update

Once we have the fluxes, the conservative update is done as

U n+1
i = U n

i +
∆t
∆x

(
Fn+1/2

i−1/2
− Fn+1/2

i+1/2

)
(8.56)

The timestep, ∆t is determined by the time it takes for the fastest wave to cross a
single zone:

∆t < min
d

{
∆x

|U · ed|+ c

}
(8.57)

(This is the limit for the CTU unsplit scheme here, but see the discussion in § 5.4.3).

Often simulation codes will further restrict the timestep. Commonly used restrictions
for pure hydrodynamics include a limit on the factor by which a timestep can grow
from one step to the next (a typical value is 1.2), and an initial scaling, say of 1/10,
for the first timestep. Together, these will force the code to take a few initial steps
before working up to the CFL limit.

8.4.1 Artificial viscosity

Colella and Woodward argue that behind slow-moving shocks these methods can
have oscillations. The fix they propose is to use some artificial viscosity—this is
additional dissipation that kicks in at shocks. (They argue that flattening alone is not
enough).

We use a multidimensional analog of their artificial viscosity ([28], Eq. 4.5) which
modifies the fluxes. By design, it only kicks in for converging flows, such that you
would find around a shock.

8.5 Boundary conditions

Boundary conditions are implemented through ghost cells. The following are the
most commonly used boundary conditions. For the expressions below, we use the
subscript lo to denote the spatial index of the first valid zone in the domain (just
inside the left boundary).

• Outflow: the idea here is that the flow should gracefully leave the domain. The
simplest form is to simply give all variables a zero-gradient:

ρlo−1,j
(ρu)lo−1,j
(ρv)lo−1,j
(ρE)lo−1,j

 =

ρlo,j
(ρu)lo,j
(ρv)lo,j
(ρE)lo,j

 (8.58)

8.6—Multidimensional problems 131

Note that these boundaries are not perfect. At the boundary, one (or more)
of the waves from the Riemann problem can still enter the domain. Only for
supersonic flow, do all waves point outward.

• Reflect: this is appropriate at a solid wall or symmetry plane. All variables are
reflected across the boundary, with the normal velocity given the opposite sign.
At the x-boundary, the first ghost cell is:

ρlo−1,j
(ρu)lo−1,j
(ρv)lo−1,j
(ρE)lo−1,j

 =

ρlo,j
−(ρu)lo,j
(ρv)lo,j
(ρE)lo,j

 (8.59)

The next is:

ρlo−2,j
(ρu)lo−2,j
(ρv)lo−2,j
(ρE)lo−2,j

 =

ρlo+1,j
−(ρu)lo+1,j
(ρv)lo+1,j
(ρE)lo+1,j

 (8.60)

and so on . . .

• Inflow: inflow boundary conditions specify the state directly on the boundary.
Technically, this state is on the boundary itself, not the cell-center. This can be
accounted for by modifying the stencils used in the reconstruction near inflow
boundaries.

• Hydrostatic: a hydrostatic boundary can be used at the base of an atmosphere
to provide the pressure support necessary to hold up the atmosphere against
gravity while still letting acoustic waves pass through. An example of this is
described in [87].

8.6 Multidimensional problems

The multidimensional case is very similar to the multidimensional advection prob-
lem. Our system of equations is now:

U t + [F(x)(U)]x + [F(y)(U)]y = 0 (8.61)

with

U =

ρ

ρu
ρv
ρE

 F(x)(U) =

ρu
ρuu + p

ρvu
ρuE + up

 F(y)(U) =

ρv
ρvu

ρvv + p
ρvE + vp

 (8.62)

We note that there is no transformation that can convert the multidimensional sys-
tem into characteristic variables, since we cannot simultaneously diagonalize the Ja-
cobians corresponding to F(x) and F(y). Related to this is that when limiting, we

132 Chapter 8. Euler Equations: Numerical Methods

limit one-dimensional slopes instead of doing a full multidimensional reconstruction
and limiting (see [11] for a multidimensional limiting procedure for linear advection.
For the Euler equations, since we cannot write the multidimensional system in a
characteristic form, we cannot use this type of method).

For a directionally-unsplit discretization, we predict the cell-centered quantities to
the edges by Taylor expanding the conservative state, U , in space and time. Now,
when replacing the time derivative (∂U/∂t) with the divergence of the fluxes, we
gain a transverse flux derivative term. For example, predicting to the upper x edge
of zone i, j, we have:

U n+1/2

i+1/2,j,L = U n
i,j +

∆x
2

∂U
∂x

+
∆t
2

∂U
∂t

+ . . . (8.63)

= U n
i,j +

∆x
2

∂U
∂x
− ∆t

2
∂F(x)

∂x
− ∆t

2
∂F(y)

∂y
(8.64)

= U n
i,j +

1
2

[
1− ∆t

∆x
A(x)(U)

]
∆U − ∆t

2
∂F(y)

∂y
(8.65)

where A(x)(U) ≡ ∂F(x)/∂U . We decompose this into a normal state and a transverse
flux difference. Adopting the notation from Colella (1990), we use Û to denote the
normal state:

Û n+1/2

i+1/2,j,L ≡ U n
i,j +

1
2

[
1− ∆t

∆x
A(x)(U)

]
∆U (8.66)

U n+1/2

i+1/2,j,L = Û n+1/2

i+1/2,j,L −
∆t
2

∂F(y)

∂y
(8.67)

The primitive variable form for this system is

qt + A(x)(q)qx + A(y)(q)qy = 0 (8.68)

where

q =

ρ

u
v
p

 A(x)(q) =

u ρ 0 0
0 u 0 1/ρ

0 0 u 0
0 γp 0 u

 A(y)(q) =

v 0 ρ 0
0 v 0 0
0 0 v 1/ρ

0 0 γp v

(8.69)
There are now 4 eigenvalues. For A(x)(q), they are u− c, u, u, u + c. If we just look
at the system for the x evolution, we see that the transverse velocity (in this case, v)
just advects with velocity u, corresponding to the additional eigenvalue.

8.6—Multidimensional problems 133

Exercise 8.4

Derive the form of A(x)(q) and A(y)(q) and find their left and right
eigenvectors.

We note here that Û n+1/2

i+1/2,j,L is essentially one-dimensional, since only the x-fluxes are
involved (through A(x)(U)). This means that we can compute this term using the
one-dimensional techniques developed in § 8.2. In particular, Colella (1990) suggest
that we switch to primitive variables and compute this as:

Û n+1/2

i+1/2,j,L = U (q̂n+1/2

i+1/2,j,L) (8.70)

Similarly, we consider the system projected along the y-direction to define the nor-
mal states on the y-edges, again using the one-dimensional reconstruction on the
primitive variables from § 8.2:

Û n+1/2

i,j+1/2,L = U (q̂n+1/2

i,j+1/2,L) (8.71)

To compute the full interface state (Eq. 8.67), we need to include the transverse term.
Colella (1990) gives two different procedures for evaluating the transverse fluxes. The
first is to simply use the cell-centered U i,j (Colella 1990, Eq. 2.13); the second is to use
the reconstructed normal states (the Û ’s) (Eq. 2.15). In both cases, we need to solve
a transverse Riemann problem to find the true state on the transverse interface. This
latter approach is what we prefer. In particular, for computing the full x-interface left
state, U n+1/2

i+1/2,j,L, we need the transverse (y) states, which we define as

U T
i,j+1/2 = R(Û

n+1/2

i,j+1/2,L, Û n+1/2

i,j+1/2,R) (8.72)

U T
i,j−1/2 = R(Û

n+1/2

i,j−1/2,L, Û n+1/2

i,j−1/2,R) (8.73)

Taken together, the full interface state is now:

U n+1/2

i+1/2,j,L = U (q̂n+1/2

i+1/2,j,L)−
∆t
2

F(y)(U T
i,j+1/2)− F(y)(U T

i,j−1/2)

∆y
(8.74)

The right state at the i + 1/2 interface can be similarly computed (starting with the
data in zone i + 1, j and expanding to the left) as:

U n+1/2

i+1/2,j,R = U (q̂n+1/2

i+1/2,j,R)−
∆t
2

F(y)(U T
i+1,j+1/2)− F(y)(U T

i+1,j−1/2)

∆y
(8.75)

Note the indices on the transverse states—they are now to the right of the interface
(since we are dealing with the right state).

134 Chapter 8. Euler Equations: Numerical Methods

We then find the x-interface state by solving the Riemann problem normal to our
interface:

U n+1/2

i+1/2,j = R(U
n+1/2

i+1/2,j,L, U n+1/2

i+1/2,j,R) (8.76)

Therefore, construction of the interface states now requires two Riemann solves: a
transverse and normal one. The fluxes are then evaluated as:

F(x),n+1/2

i+1/2,j = F(x)(U n+1/2

i+1/2,j) (8.77)

Note, for multi-dimensional problems, in the Riemann solver, the transverse veloc-
ities are simply selected based on the speed of the contact, giving either the left or
right state.

The final conservative update is done as:

U n+1
i,j = U n

i,j +
∆t
∆x

(
F(x),n+1/2

i−1/2,j − F(x),n+1/2

i+1/2,j

)
+

∆t
∆y

(
F(y),n+1/2

i,j−1/2
− F(y),n+1/2

i,j+1/2

)
(8.78)

8.6.1 3-d unsplit

The extension of the unsplit methodology to 3-d is described by Saltzman [66]. The
basic idea is the same as in 2-d, except now additional transverse Riemann solve are
needed to fully couple in the corners.

8.7 Source terms

Adding source terms is straightforward. For a system described by

U t + [F(x)(U)]x + [F(y)(U)]y = H (8.79)

we predict to the edges in the same fashion as described above, but now when we
replace ∂U/∂t with the divergence of the fluxes, we also pick up the source term.
This appears as:

U n+1/2

i+1/2,j,L = U n
i,j +

∆x
2

∂U
∂x

+
∆t
2

∂U
∂t

+ . . . (8.80)

= U n
i,j +

∆x
2

∂U
∂x
− ∆t

2
∂F(x)

∂x
− ∆t

2
∂F(y)

∂y
+

∆t
2

Hi,j (8.81)

= U n
i,j +

1
2

[
1− ∆t

∆x
A(x)(U)

]
∆U − ∆t

2
∂F(y)

∂y
+

∆t
2

Hi,j (8.82)

We can compute things as above, but simply add the source term to the Û ’s and
carry it through.

Note that the source here is cell-centered. This expansion is second-order accurate.
This is the approach outlined in Miller & Colella [53]. Also notice the similarity of
this source term to a second-order Euler method for integrating ODEs.

8.7—Source terms 135

Alternately, we can include the source terms in the characteristic tracing of the in-
terface states. This is the approach taken in, e.g., the original PPM paper. To make
things more concrete, let’s consider just gravity as the source. Our primitive variable
equations in this case are:

qt + A(q)qx = G (8.83)

where G = (0, g, 0)T—i.e. the gravitational source only affects u, not ρ or p†.

First we construct a parabolic profile of g in each zone and integrate under that
profile to determine the average g carried by each wave to the interface, we’ll denote
these as I (ν)± (g). Then we include the gravitational source term in the characteristic
projection itself. Our projections are now:

∑
ν;λ(ν)≥0

l(ν) · (q̃− I (ν)+ (q)− ∆t
2 G)r(ν) (8.84)

for the left state, and

∑
ν;λ(ν)≤0

l(ν) · (q̃− I (ν)− (q)− ∆t
2 G)r(ν) (8.85)

for the right state. Since G is only non-zero for velocity, only the velocity changes.
Writing out the sum (and performing the vector products), we get:

un+1/2

i+1/2,L = ũ+ −
1
2

[(
ũ+ − I (−)+ (u)− ∆t

2
I (−)+ (g)

)
− p̃+ − I (−)+ (p)

C

]

− 1
2

[(
ũ+ − I (+)

+ (u)− ∆t
2
I (+)
+ (g)

)
+

p̃+ − I (+)
+ (p)

C

]
(8.86)

where the only change from Eq. 8.43 are the I (−)+ (g) and I (+)
+ (g) terms. ‡

Regardless of how the source term information is included in the interface states, we
also need to include it in the conservative update. To second-order, we need it to be
time-centered, which usually means averaging the time-level n and n + 1 sources:

U n+1
i,j = U n

i,j +
∆t
∆x

(
F(x),n+1/2

i−1/2,j − F(x),n+1/2

i+1/2,j

)

+
∆t
∆y

(
F(y),n+1/2

i,j−1/2
− F(y),n+1/2

i,j+1/2

)
+

∆t
2

(
H(U n

i,j) + H(U n+1
i,j)

)
(8.87)

†Note that in the PPM paper, they put G on the lefthand side of the primitive variable equation, so
our signs are opposite.

‡These differ from the expression in the PPM paper, where ∆tG, not (∆t/2)G is used in the projec-
tion, however this appears to be a typo. To see this, notice that if both waves are moving toward the

interface, then the source term that is added to the interface state is (∆t/4)(I (−)+ (g) + I (+)
+ (g)) for the

left state, which reduces to (∆t/2)g for constant g—this matches the result from the Taylor expansion
above (Eq. 8.82).

136 Chapter 8. Euler Equations: Numerical Methods

As written, this appears to be an implicit update (since U n+1 depends on Hn+1), but
often, the form of the source terms allows you to update the equations in sequence
explicitly.

Again, using a constant gravitational acceleration as an example, and looking in 1-d
for simplicity, U = (ρ, ρu, ρE)⊺ and H = (0, ρg, ρug)⊺, so our update sequence is:

ρn+1
i = ρn

i +
∆t
∆x

[
ρn+1/2

i−1/2
un+1/2

i−1/2
− ρn+1/2

i+1/2
un+1/2

i+1/2

]
(8.88)

(ρu)n+1
i = (ρu)n

i +
∆t
∆x

[
ρn+1/2

i−1/2
(un+1/2

i−1/2
)2 − ρn+1/2

i+1/2
(un+1/2

i+1/2
)2
]
+

∆t
∆x

(
pn+1/2

i−1/2
− pn+1/2

i+1/2

)

+
∆t
2
(ρn

i + ρn+1
i)g (8.89)

(ρE)n+1
i = (ρE)n

i +
∆t
∆x

[(
ρn+1/2

i−1/2
En+1/2

i−1/2
+ pn+1/2

i−1/2

)
un+1/2

i−1/2
−

(
ρn+1/2

i+1/2
En+1/2

i+1/2
+ pn+1/2

i+1/2

)
un+1/2

i+1/2

]
+

∆t
2

[
(ρu)n + (ρu)n+1

]
g

(8.90)

These updates can be done one after another without any implicit coupling. Other
sources, like the Coriolis force, will involve an implicit update, but even then, it is
local to a single zone and can be solved analytically.

8.8 Simple geometries

So far we have been working only with Cartesian geometries, but it is easy to ex-
tend these methods to simple non-Cartesian geometies, like spherical and cylindrical.
These geometies allow us to capture 3-d volume expansion effects in lower dimen-
sions.

For a 1-d solver, a spherical geometry means that our coordinate is the radius in
the sphere, and as we move outward from the origin, the volume of a zone (which is
actually now a spherical shell) grows. There are two places where we need to take the
geometry into account: the reconstruction of the interface states and the conservative
update.

Our 1-d system in spherical coordinates appears as:

∂U
∂t

+
1
r2

∂r2F
∂r

= 0 (8.91)

The geometry factors that appear are from the spherical form of the divergence.
Expanding out the radial derivative, we have:

∂U
∂t

+
∂F
∂r

= −2F
r

(8.92)

8.8—Simple geometries 137

Likewise, the primitive variable equations now have source terms:

∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u
∂x

= −2ρu
r

(8.93)

∂u
∂t

+ u
∂u
∂x

+
1
ρ

∂p
∂x

= 0 (8.94)

∂p
∂t

+ u
∂p
∂x

+ Γ1 p
∂u
∂x

= −2Γ1 pu
r

(8.95)

Exercise 8.5

Derive the above system of 1-d spherical primitive variable equations
starting from the conservative equations. Be sure to include the geom-
etry factors everywhere there is a divergence.

For the prediction of the interface states, we now include these geometric source
terms as sources to the interface state, following the same ideas as in § 8.7.

The conservative update now needs to include the geometry factors. However, it
is complicated by the fact that in the momentum equation, the pressure term is a
gradient, not a divergence, and therefore has different geometic factors. The update
of the system appears as:

ρn+1
i = ρn

i +
∆t
Vi

[
Ai−1/2ρ

n+1/2

i−1/2
un+1/2

i−1/2
− Ai+1/2ρ

n+1/2

i+1/2
un+1/2

i+1/2

]
(8.96)

(ρu)n+1
i = (ρu)n

i +
∆t
Vi

[
Ai−1/2ρ

n+1/2

i−1/2
(un+1/2

i−1/2
)2 − Ai+1/2ρ

n+1/2

i+1/2
(un+1/2

i+1/2
)2
]

+
∆t
∆r

(
pn+1/2

i−1/2
− pn+1/2

i+1/2

)
(8.97)

(ρE)n+1
i = (ρE)n

i +
∆t
Vi

[
Ai−1/2

(
ρn+1/2

i−1/2
En+1/2

i−1/2
+ pn+1/2

i−1/2

)
un+1/2

i−1/2
−

Ai+1/2

(
ρn+1/2

i+1/2
En+1/2

i+1/2
+ pn+1/2

i+1/2

)
un+1/2

i+1/2

]
(8.98)

Here, the geometry factors are:

Ai−1/2 = (ri−1/2)
2 (8.99)

Vi = (ri)
2∆r (8.100)

It is also common to do 2-d axisymmetric models—here the r and z coordinates from
a cylindrical geometry are modeled. Again, this appears Cartesian, except there is a
volume factor implicit in the divergence that must be accounted for. Our system in
axisymmetric coordinates§ is:

∂U
∂t

+
1
r

∂rF(r)

∂r
+

∂F(z)

∂z
= 0 (8.101)

§Some sources will call this cylindrical coordinates, but note that the grid is not a polar grid—it is
still Cartesian

138 Chapter 8. Euler Equations: Numerical Methods

Simulation plane

Figure 8.8: The axisymmetric computational domain. Here we imagine that the 2-d
plane rotates through the cylindrical θ angle to create a volume.

Expanding out the r derivative, we can write this as:

∂U
∂t

+
∂F(r)

∂r
+

∂F(z)

∂z
= −F(r)

r
(8.102)

Again, the primitive variable version of this expanded form is used for the interface
state prediction. The conservative update follows the same idea as the 1-d spherical
version. The area and volume factors only differ from their Cartesian counterparts in
the radial direction, and take the form:

Ai−1/2,j = ri−1/2∆z (8.103)

Ai,j−1/2 = ri∆z (8.104)

Vi,j = ri∆r∆z (8.105)

These choices of geometric factors reproduce a discretized form of the cylindrical
divergence:

∇ ·ϕ =
1
r

∂(rϕ(r))

∂r
+

∂ϕ(z)

∂z
(8.106)

Just as with the 1-d spherical case, the pressure term in the momentum equation
needs to be treated separately from the flux, since it enters as a gradient and not a
divergence.¶

¶It is common to see the divergence term expressed as

∇ ·ϕ =
1
rα

∂(rαϕ(r))

∂r
+ . . . (8.107)

where α = 1 for axisymmetric and α = 2 for 1-d spherical. This allows for the geometry correction to
be expressed more concisely, as the source term takes the form −αF/r.

8.9—Some Test problems 139

8.9 Some Test problems

There are a large number of standard test problems that are used to test out our
methods. Like we say with advection, it is best to have a problem with an analytic
solution. Here we show just a few of the most popular test problems.

8.9.1 Shock tubes

Shock tubes are Riemann problems—consider the evolution of an initial discontinuity
in the domain. The evolution with time will just be the solution to the Riemann
problem that we described § 7.2. The initial conditions can be varied to produce any
combination of shocks and rarefactions as the left and right waves. A popular initial
condition is the Sod problem [74] which results is a right moving shock and contact
and a left moving rarefaction.

Note: it is a good test of your code’s ability to preserve symmetry to flip the initial
conditions left/right and rerun. The results should be the same to machine precision,
but atleast to roundoff error. A common reason for breaking symmetry is using
inequalities in your code that are biases in a direction, e.g.,

if u > 0:
positive velocity test case

else:
negative or zero velocity test case

This has a left-right bias, since we don’t handle the case where u = 0 separately. A
better construction would test on u < 0 alone, and then have a final else clause to
catch u = 0.

Since these tests start out with a discontinuity, they are not the best tests to use for
convergence testing. Wherever there is an initiali discontinuity, the limiters will kick
in and drop your method to first-order accurate.

For a general equation of state, you can still solve the Riemann problem exactly and
define analogous test problems to those commonly used for a gamma-law gas. Some
shock tube test problems for a stellar equation of state are shown in [88].

For the tests shown below, we use the hydro1d code described in Appendix C.

Sod problem

The initial conditions for the Sod problem [74] are:

ρl = 1 ρr = 1/8

ul = 0 ur = 0 (8.108)

pl = 1 pr = 1/10

140 Chapter 8. Euler Equations: Numerical Methods

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00

ρ

exact
piecewise constant

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00

u

0.0 0.2 0.4 0.6 0.8 1.0

0.25

0.50

0.75

1.00

p

0.0 0.2 0.4 0.6 0.8 1.0
x

1.75

2.00

2.25

2.50

2.75

e

Figure 8.9: Piecewise constant reconstruction with the Sod problem, using 128 zones,
C = 0.8, and the CGF Riemann solver. This was run with hydro1d using the sod

problem setup, setting godunov_type=0 and visualized with the sod_compare.py script
there.

usually with γ = 1.4

These result in a left wave moving contact and rightward moving contact and shock.
The shock is not particularly strong, but this problem is a nice demonstration of the
types of hydrodynamic waves.

8.9—Some Test problems 141

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00

ρ

exact
piecewise parabolic

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00

u

0.0 0.2 0.4 0.6 0.8 1.0

0.25

0.50

0.75

1.00

p

0.0 0.2 0.4 0.6 0.8 1.0
x

2.0

2.5

e

Figure 8.10: Piecewise parabolic reconstruction with the Sod problem, using 128 zones,
C = 0.8, and the CGF Riemann solver. This was run with hydro1d using the sod

problem setup, setting godunov_type=2 and visualized with the sod_compare.py script
there.

Double rarefaction

The double rarefaction problem starts with initially diverging flow that creates a
vacuum state in the middle. The initial conditions (as given in [82] are

ρl = 1 ρr = 1

ul = −2.0 ur = 2.0 (8.109)

pl = 0.4 pr = 0.4

142 Chapter 8. Euler Equations: Numerical Methods

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00

ρ

exact
piecewise constant

0.0 0.2 0.4 0.6 0.8 1.0
2

1

0

1

2

u

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

p

0.0 0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

e

Figure 8.11: Piecewise constant reconstruction with the double rarefaction problem,
using 128 zones, C = 0.8, and the CGF Riemann solver. This was run with hy-
dro1d using the sod problem setup, setting godunov_type=0 and visualized with the
sod_compare.py script there.

8.9.2 Sedov blast wave

The Sedov (or Sedov-Taylor) blast wave [70] is a point explosion—energy, Eexpl, is
placed at a point in a uniform domain. A spherical shockwave propagates outward,
evacuating the region in the center. The Sedov problem also has an analytic solu-
tion||, and this problem is a good way of testing out the geometric factors for 1-d
spherical and 2-d axisymmetric geometries.

||See [42] for a nice code to general the solutions

8.9—Some Test problems 143

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00

ρ

exact
piecewise parabolic

0.0 0.2 0.4 0.6 0.8 1.0
2

1

0

1

2

u

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

p

0.0 0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

e

Figure 8.12: Piecewise parabolic reconstruction with the double rarefaction problem,
using 128 zones, C = 0.8, and the CGF Riemann solver. This was run with hy-
dro1d using the sod problem setup, setting godunov_type=2 and visualized with the
sod_compare.py script there.

The major difficulty with initializing the Sedov problem is representing a point,
where all the energy desposited, on the grid. If you just initialize a singe zone,
then the size of the point changes as you change resolution. Additionally, in 2- or 3-d
Cartesian coordinates, the point will be squared off. A standard way of initializing
this (see, e.g., [58]) is to imagine the energy deposition inflating a region of radius rinit

like a balloon, resulting in an energy density, E = Eexpl/Vinit, where Vinit = 4πr3
init/3

for a spherical blast wave and Vinit = πr2
init for a cylindrical blast wave. Then the

144 Chapter 8. Euler Equations: Numerical Methods

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
0

1

2

3

4

5

ρ

exact
simulation

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
0

1

2

3

4

5

u

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
r

0

5

10

15

20

25

30

35

p

Figure 8.13: 1-d Sedov explosion with piecewise parabolic reconstruction, using 128

zones (on r ∈ [0, 1]), C = 0.8, and the CGF Riemann solver. This was run with hydro1d
using the sedov problem setup and visualized with the sedov_compare.py script there.
The 1-d spherical geometry used makes this act as if it were a sphere.

pressure is

p =
Eexpl

Vinit
(γ− 1) (8.110)

Figure 8.13 shows the solution to the Sedov problem in 1-d in a spherical geometry.
This is compared to the spherical Sedov solution (solid line). There is good agreement
in the position of the shock and density and velocity profiles. The pressure behind
the shock is a little low—this is likely an artifact of the initialization process.

8.9—Some Test problems 145

0.0

0.2

0.4

0.6

0.8

1.0

y

ρ U

0.00 0.25 0.50 0.75 1.00

x

0.0

0.2

0.4

0.6

0.8

1.0

y

p

0.00 0.25 0.50 0.75 1.00

x

e
0.0

0.8

1.6

2.4

3.2

0.0

0.3

0.6

0.9

1.2

0.0

0.4

0.8

1.2

1.6

0

100

200

300

400

t = 0.1

Figure 8.14: 2-d Sedov explosion with piecewise linear reconstruction, using 128
2

zones (on r ∈ [0, 1]× [0, 1]), C = 0.8, and the HLLC Riemann solver. This was run with
pyro as ./pyro.py compressible sedov inputs.sedov. An initial perturbation size of
rinit = 0.01 was used.

In 2-d, we run the problem in Cartesian coordinates—this produces a cylindrical
blast wave. Figure 8.14 shows the solution in 2-d. The density and pressure look
very symmetric. In the velocity magnitude plot, we see an imprint of the grid along
coordinate axes, and likewise in the internal energy. The bump in internal energy
near the origin arises because of the error in defining e from E and U. We can produce
an angle-averaged profile of this and compare to the analytic solution, shown in
Figure 8.15.

8.9.3 Advection

We can run a simple advection test analogous to the tests we used in Ch. 4. However,
because we are now doing hydrodynamics, we need to suppress the dynamics. This
is accomplished by putting the profile we want to advect in the density field and
then put it in pressure equilibrium by adjusting the internal energy. For example,

146 Chapter 8. Euler Equations: Numerical Methods

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0

1

2

3

4

5

ρ

exact

simulation

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.00

0.25

0.50

0.75

1.00

1.25

u

0.0 0.1 0.2 0.3 0.4 0.5 0.6
r

0.0

0.5

1.0

1.5

2.0

p

Figure 8.15: Angle-average profile for the 2-d Sedov explosion from Figure 8.14 shown
with the analytic solution. This was constructed using the sedov_compare.py script in
pyro.

consider a Gaussian profile. We initialize the density as:

ρ = (ρ1 − ρ0)e−(x−xc)2/σ2
+ ρ0 (8.111)

8.9—Some Test problems 147

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0 exact

simulation

Figure 8.16: Piecewise parabolic reconstruction with an advection test, using 128 zones,
C = 0.8, and the CGF Riemann solver. A Gaussian profile was advected for 10 periods.
This was run with hydro1d using the advect problem setup and visualized with the
advect_compare.py script there.

To advect the profile to the right, we choose a constant velocity,

u = u0 (8.112)

and to suppress dynamics, we make the pressure constant,

p = p0 (8.113)

Finally, we compute the total energy as

ρE =
p

γ− 1
+

1
2

ρu2 (8.114)

Figure 8.16 shows an example of a Gaussian profile advected for 10 periods. The
initial conditions used ρ0 = 10−3, ρ1 = 1, p0 = 10−6, u0 = 1, and σ = 0.1 (these
coincide with the choices used in [34]). The non-zero value for the ambient density,
ρ0, ensures that any quantities that are derived by dividing by density remain well-
defined. The result is similar to what we saw when we considered pure advection—
the shape is mostly preserved, but the peak of the Gaussian is clipped.

8.9.4 Slowmoving shock

Slow moving (or stationary) shocks can be difficult to model, as oscillations can be
setup behind the shock (this is discussed a little in [28, 46]). We can produce a slow

148 Chapter 8. Euler Equations: Numerical Methods

moving shock as a shock tube, and we can use the jump conditions across a shock that
were derived for the Riemann problem to find the conditions to setup a stationary
(or slow-moving) shock.

The speed of a right-moving shock was found (see Eq. 7.90) as:

S = ur + cr

[(
p⋆
pr

)
γ + 1

2γ
+

γ− 1
2γ

]1/2

(8.115)

We want S = 0, which allows us to express the pre-shock velocity, ur, as:

ur = −cr

[(
p⋆
pr

)
γ + 1

2γ
+

γ− 1
2γ

]1/2

(8.116)

We have the freedom to choose the density and pressure ahead of the shock, ρr and
pr, which in turn gives us cr. Next, we can pick the strength of the shock by choosing
the jump in pressure, p⋆/pr. Together, this allows us to compute ur, and thus we
know the entire pre-shock state. We can compute the post-shock state (which was
the star state when we discussed the Riemann problem) using the jump conditions,
Eqs. 7.86 and 7.89.**

For a pressure jump of 100 across a shock, the following conditions will generate a
stationary right-facing shock (with γ = 1.4):

ρl = 5.6698 ρr = 1

ul = −1.9336 ur = −10.9636 (8.117)

pl = 100 pr = 1

By adjusting the velocity of both the left and right state, we can produce a strong
shock that moves slowly across the grid. For instance, a shock with S = 0.4 results
from

ρl = 5.6698 ρr = 1

ul = −1.5336 ur = −10.5636 (8.118)

pl = 100 pr = 1

8.9.5 Two-dimensional Riemann problems

Several different 2-d Riemann problems were introduced in [69], to explore the multi-
dimensional interactive of the different hydrodynamic waves. These problems ini-
tialize the 4 quadrants of the domain with different states, and watch the ensuing
evolution. There are some analytic estimates that can be compared to, but also these
tests can provide a means of assessing the symmetry of a code in the presence of
complex flows. We use the setup corresponding to configuration 3 in that paper (this
same setup is used in [45]).

**The script slow_shock.py will find the initial conditions to generate a stationary shock.

https://github.com/zingale/hydro_examples/blob/master/compressible/slow_shock.py

8.10—Method of lines integration and higher order 149

0.0 0.2 0.4 0.6 0.8 1.0
1

2

3

4

5

6

ρ

exact
simulation

0.0 0.2 0.4 0.6 0.8 1.0

10

8

6

4

2

u

0.0 0.2 0.4 0.6 0.8 1.0
x

0

20

40

60

80

100

p

Figure 8.17: 1-d slow moving shock problem with piecewise parabolic reconstruction,
using 128 zones (on r ∈ [0, 1]), C = 0.8, and the CGF Riemann solver. This was run with
hydro1d using the sod problem setup and visualized with the sod_compare.py script
there.

8.10 Method of lines integration and higher order

Just like we explored with linear advection (§ 5.3), instead of doing the characteristic
tracing, we could rely on the integrator to do the work for us.

Discretizing our system in space leads to the following system:

dU i,j

dt
= −F(x)(U i+1/2,j)− F(x)(U i−1/2,j)

∆x
− F(y)(U i,j+1/2)− F(y)(U i,j−1/2)

∆y
(8.119)

150 Chapter 8. Euler Equations: Numerical Methods

0.0

0.2

0.4

0.6

0.8

1.0

y

ρ U

0.00 0.25 0.50 0.75 1.00

x

0.0

0.2

0.4

0.6

0.8

1.0

y

p

0.00 0.25 0.50 0.75 1.00

x

e

0.4

0.8

1.2

1.6

0.0

0.5

1.0

1.5

2.0

0.4

0.8

1.2

1.6

0.6

1.2

1.8

2.4

3.0

t = 0.8

Figure 8.18: Two-dimensional Riemann problem from [69].

Note that there is no time superscript in the U used to evaluate the fluxes on the
righthand side—we have not done any time discretization yet. Now we can use an
ODE integrator to solve this system.

Consider second-order Runge-Kutta. We evaluate two slopes,

k1 = ∆t
[
−

F(x)(U n
i+1/2,j)− F(x)(U n

i−1/2,j)

∆x

−
F(y)(U n

i,j+1/2)− F(y)(U n
i,j−1/2)

∆y

]
(8.120)

k2 = ∆t
[
−F(x)([U n + k1/2]i+1/2,j)− F(x)([U n + k1/2]i−1/2,j)

∆x

−F(y)([U n + k1/2]i,j+1/2)− F(y)([U n + k1/2]i,j−1/2)

∆y

]
(8.121)

and then
U n+1

i,j = U n
i,j + k2 (8.122)

8.11—Thermodynamic issues 151

In the construction of the interface states, U n
i+1/2,j or [U n + k1/2]i+1/2,j, there is no

explicit transverse term, since that arose from Taylor expanding U n
i,j in time through

∆t/2. Instead, we simply construct these interface states using a one-dimensional
reconstruction and solve a Riemann problem at each interface. The evaluation of the
second slope, k2, implicitly includes the transverse information since we add k1/2 to
U n

i,j before doing the prediction to the interfaces. Also note, however, that in this
construction of the interface states, there is no characteristic projection, since that
arises from predicting the interface states forward in time. Again, these interface
states are at a constant time, not predicted into the future.

Generally speaking we want the order of accuracy in time to match that in space.
The fourth-order Runge-Kutta method is a popular method for integrating ODEs, so
it makes sense to couple this with a fourth-order-in-space method. However, going
higher-order than second-order is more challenging. The key issue is that we can
no longer simply approximate the cell average as the cell-center value, i.e., ⟨ϕ⟩i ̸= ϕi.
This comes into play, for instance, in translating between the conserved and primitive
variables. A fully fourth-order method is presented in [52]

Note that when using a Runge-Kutta method-of-lines integrator for the time-discretization
of a multidimensional system, the timestep is actually more restrictive than the cases
presented above that predicted the interface states to the half-time and performed
characteristic tracing. Titarev & Toro [81] claim that you need 0 < C < 1/2 for 2-d
flows and 0 < C < 1/3 for 3-d flows.

An additional complexity arises when doing multiphysics. Often we split the differ-
ent physical processes up and treat them in turn. There are standard methods to do
this with second-order accuracy in time, but higher-order is more tricky.

8.11 Thermodynamic issues

8.11.1 Defining temperature

Although not needed for the pure Euler equations, it is sometimes desirable to define
the temperature for source terms (like reactions) or complex equations of state. The
temperature can typically be found from the equation of state given the internal
energy:

e = E− 1
2

u2 (8.123)

T = T(e, ρ) (8.124)

Trouble can arise when you are in a region of flow where the kinetic energy domi-
nates (high Mach number flow). In this case, the e defined via subtraction can become
negative due to truncation error in the evolution of u compared to E. In this instance,
one must either impose a floor value for e or find an alternate method of deriving it.

152 Chapter 8. Euler Equations: Numerical Methods

In [19], an alternate formulation of the Euler equations is proposed. Both the total
energy equation and the internal energy equation are evolved in each zone. When
the flow is dominated by kinetic energy, then the internal energy from the internal
energy evolution equation is used. The cost of this is conservation—the internal
energy is not a conserved quantity, and switching to it introduces conservation of
energy errors.

8.11.2 General equation of state

The above methods were formulated with a constant gamma equation of state. A
general equation of state (such as degenerate electrons) requires a more complex
method. Most methods are designed to reduce the need to call a complex equation
of state frequently, and work by augmenting the vector of primitive variables with
additional thermodynamic information. There are two parts of the adaption to a
general equation of state: the interface states and the Riemann problem.

Carrying γe

The classic prescription for extending this methodology is presented by Colella and
Glaz [25]. They construct a thermodynamic index,

γe =
p
ρe

+ 1 (8.125)

and derive an evolution equation for γe (C&G, Eq. 26). We can derive a similar
expression as

Dγe

Dt
=

D
Dt

(
p
ρe

+ 1
)
= − p

(ρe)2
D(ρe)

Dt
+

1
ρe

Dp
Dt

= (γe − 1)(γe − Γ1)∇ ·U (8.126)

where we used Eqs. 7.22 and 7.99, and the definition of the sound speed.

This evolution equation is used to predict γe to interfaces, and these interface values
of γe are used in the Riemann solver presented there to find the fluxes through the
interface. A different adiabatic index (they call Γ, we call Γ1) appears in the definition
of the sound speed. They argue that this can be brought to interfaces in a piecewise
constant fashion while still making the overall method second order, since Γ1 does
not explicitly appear in the fluxes (see the discussion at the top of page 277).

We can derive the characteristic structure of this system for use in the tracing in the

8.11—Thermodynamic issues 153

construction of interface states††. If we write our system as

q =

τ

u
p
γe

 (8.127)

(we use τ = 1/ρ here for consistency with CG), we have

A =

u −τ 0 0
0 u τ 0
0 c2/τ u 0
0 −α 0 u

 (8.128)

where we define α = (γe − 1)(γe − Γ1) for convenience. The right eigenvectors are:

r(−) =

1
c/τ

−c2/τ2

α/τ

 r(◦) =

1
0
0
0

 r(◦,γe) =

0
0
0
1

 r(+) =

1
−c/τ

−c2/τ2

α/τ

(8.129)
and corresponding left eigenvectors are:

l(−) =
(

0 τ
2c − τ2

2c2 0
)

(8.130)

l(◦) =
(

0 τ
2c − τ2

2c2 0
)

(8.131)

l(◦,γe) =
(

0 0 ατ
c2 1

)
(8.132)

l(+) =
(

0 − τ
2c − τ2

2c2 0
)

(8.133)

Carrying (ρe)

Alternately, the Castro paper [2] relies on an idea from an unpublished manuscript by
Colella, Glaz, and Ferguson that predicts ρe to edges in addition to ρ, u, and p. Since
ρe comes from a conservation-like equation (Eq. 7.99), predicting it to the interface in
the unsplit formulation is straightforward. This over-specifies the thermodynamics,
but eliminates the need for γe.

With the addition of ρe, our system becomes:

q =

ρ

u
p
ρe

 A =

u ρ 0 0
0 u 1/ρ 0
0 ρc2 u 0
0 ρh 0 u

 (8.134)

††A Jupyter notebook using SymPy that derives these eigenvectors is available here: Ï hy-
dro_examples: euler-generaleos.ipynb

https://github.com/zingale/hydro_examples/blob/master/compressible/euler-generaleos.ipynb

154 Chapter 8. Euler Equations: Numerical Methods

where h = e + p/ρ is the specific enthalpy. The eigenvalues of this system are:

λ(−) = u− c λ(◦) = u λ(◦,ρe) = u λ(+) = u + c (8.135)

and the eigenvectors are:

r(−) =

1
−c/ρ

c2

h

 r(◦) =

1
0
0
0

 r(◦,ρe) =

0
0
0
1

 r(+) =

1
c/ρ

c2

h

(8.136)
and

l(−) = (0 − ρ
2c

1
2c2 0)

l(◦) = (1 0 − 1
c2 0)

l(◦,ρe) = (0 0 − h
c2 1)

l(+) = (0 ρ
2c

1
2c2 0) (8.137)

Remember that the state variables in the q vector are mixed into the other states by
l · q. Since all l(ν)’s have 0 in the ρe ‘slot’ (the last position) except for l(◦,ρe), and the
corresponding r(◦,ρe) is only non-zero in the ρe slot, this means that ρe is not mixed
into the other state variables. This is as expected, since ρe is not needed in the system.

Also recall that the jump carried by the wave ν is proportional to r(ν)—since r(−),
r(◦,ρe), and r(+) have non-zero ρe elements, this means that ρe jumps across these
three waves.

Working through the sum for the (ρe) state, and using a ∼ to denote the reference
states, we arrive at:

(ρe)n+1/2

i+1/2,L = (̃ρe)− 1
2

[
−ρ

c

(
ũ− I (1)+ (u)

)
+

1
c2

(
p̃− I (1)+ (p)

)]
h

−
[
− h

c2

(
p̃− I (3)+ (p)

)
+
(
(̃ρe)− I (3)+ (ρe)

)]

− 1
2

[
ρ

c

(
ũ− I (4)+ (u)

)
+

1
c2

(
p̃− I (4)+ (p)

)]
h (8.138)

This is the expression that is found in the Castro code. If you are dealing with a
simple geometry, then the divergences have metric terms. In 1-d, we then have:

∂(ρe)
∂t

+
1
rα

∂(rαρue)
∂r

+ p
1
rα

∂(rαu)
∂r

(8.139)

Expanding out the derivatives gives use the equation in Cartesian form with a geo-
metric source term:

∂(ρe)
∂t

+
∂(ρue)

∂r
+ p

∂u
∂r

= −αρhu
r

(8.140)

8.12—WENO methods for the Euler equations 155

where h is the specific enthalpy. This can be accommodated using the procedure
described in § 8.8.

All of these methods are designed to avoid EOS calls where possible, since general
equations of state can be expensive.

Extending these to an unsplit formulation requires carrying an additional auxil-
iary variable from the primitive state back to the conserved state and adding the
transverse gradients to its interface state. Castro deals with a conserved state of
U = (ρ, ρU, ρE, p), and explicitly adds the transverse terms found in the multi-
dimensional form of Eq. 7.22 to the normal states of p.

8.12 WENOmethods for the Euler equations

When dealing with nonlinear systems the flux split method introduced in section 6.4
generalizes directly. The simplest, and most diffusive flux splitting uses the maxi-
mum characteristic speed α. For a system, such as the Euler equations, the simplest
method is to compute α by maximizing over all characteristics. The directional fluxes
F(±)(u) can then be reconstructed using a high order WENO scheme component by
component.

However, this approach can lead to significant oscillations, even in moderate tests.
Rather than doing the reconstruction of the components of the directional fluxes, a
safer approach is to work with characteristic variables. The discussion in chapter 7

suggests that, by computing the left and right eigenvectors of the appropriate Ja-
cobian matrix A = ∂F/∂U , we can project the directional fluxes into the directional
characteristic fluxes (using the left eigenvectors), reconstruct these characteristic fluxes
using a high order method, and then compute the reconstructed directional fluxes
required (using the right eigenvectors). As the characteristic fluxes should contain
information about only a single wave at a time, this should give similar results to the
scalar case and reduce problems from close waves from different families.

The Jacobian matrix needs to be computed separately for each point at which the
flux needs computing. The best choice of state from which the Jacobian is computed
is not clear: often the arithmetic average of neighbouring states is used, but more
complex choices can give better results.

A direct comparison of component-wise and characteristic-wise flux-vector split WENO
methods, applied to the Sod test, is given in figure 8.19 for r = 3 and in figure 8.20 for
r = 5. The comparison to the PPM method in figure 8.10 is particularly instructive.
The PPM method is specifically designed for hydrodynamic problems, and is much
better at cleanly capturing the discontinuities, especially the contact. The WENO ap-
proach will have a higher order of accuracy, which will be clearest on tests with more
smooth variation. The oscillations introduced by the WENO methods are more pro-
nounced as the order is increased, but are reduced by the use of characteristic-wise

156 Chapter 8. Euler Equations: Numerical Methods

reconstruction. This is most clearly seen in the results for the internal energy in the
r = 5 case shown in figure 8.20.

Another illustration of the advantages of a numerical method, such as PPM, that is
specifically designed for the Euler equations, is shown in the double rarefaction test
in figure 8.21. The advantages of the higher order methods are shown by how well
the WENO schemes capture the edges of the rarefaction waves, even with so few
points and the diffusive Lax-Friedrichs flux splitting. However, the artificial heating
effect seen at the trivial contact at the center of the domain is about as bad as that
from piecewise constant reconstruction, and nowhere near as good as PPM. Whilst
increasing the reconstruction order has a small impact, a less diffusive flux splitting
would be needed to approach PPM’s performance.

8.12.1 Extensions

The main advantage of the WENO method is that it retains its high order when ex-
tending to multiple dimensions using dimensional splitting. From the finite-difference
form there are no transverse Riemann problems to solve. From using the Method of
Lines there is no issue about ordering the dimensional sweeps: the updates in each
direction are computed separately but applied together in the time integrator. This
formally retains the high-order accuracy but can lose significant absolute accuracy –
compare the advection of a top-hat function with lower order methods using trans-
verse Riemann problem solutions.

The global Lax-Friedrichs flux splitting above can be excessively diffusive. A local
Lax-Friedrichs flux splitting, where α is computed at each point by maximising over
the characteristic speed within the stencil at that point, is less diffusive but slightly
more expensive. Roe-style flux splittings are possible but not always stable.

8.12—WENO methods for the Euler equations 157

0.2

0.4

0.6

0.8

1.0
WENO, r = 3, componentwise

0.2

0.4

0.6

0.8

1.0
WENO, r = 3, characteristicwise

0.0

0.2

0.4

0.6

0.8

u

0.0

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

1.0

p

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
x

1.8

2.0

2.2

2.4

2.6

2.8

3.0

e

0.0 0.2 0.4 0.6 0.8 1.0
x

1.8

2.0

2.2

2.4

2.6

2.8

Figure 8.19: The Sod test solved with WENO methods, r = 3, using characteristic-wise
and component-wise reconstruction, using 64 zones and a cfl of 0.5. To compare with
Godunov’s method see figure 8.9 and with PPM see figure 8.10. The WENO method
does not capture discontinuities, especially the contact, as well as the PPM method
which is specifically designed for the Euler equations. The small oscillations visible
in the component-wise reconstruction are damped by using the more complex and
expensive characteristic-wise approach.
Ï hydro_examples: weno_euler.py

https://github.com/zingale/hydro_examples/blob/master/compressible/weno_euler.py

158 Chapter 8. Euler Equations: Numerical Methods

0.2

0.4

0.6

0.8

1.0
WENO, r = 5, componentwise

0.2

0.4

0.6

0.8

1.0
WENO, r = 5, characteristicwise

0.0

0.2

0.4

0.6

0.8

u

0.0

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

1.0

p

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
x

1.8

2.0

2.2

2.4

2.6

2.8

3.0

e

0.0 0.2 0.4 0.6 0.8 1.0
x

1.8

2.0

2.2

2.4

2.6

2.8

Figure 8.20: The Sod test solved with WENO methods, r = 5, using characteristic-wise
and component-wise reconstruction, using 64 zones and a cfl of 0.5. Compare with
figure 8.19 to see the effect of the higher order of WENO scheme. The oscillations in
the component-wise approach are much more pronounced as the order of the recon-
struction is increased, and the characteristic-wise approach continues to help with this.
Ï hydro_examples: weno_euler.py

https://github.com/zingale/hydro_examples/blob/master/compressible/weno_euler.py

8.12—WENO methods for the Euler equations 159

0.0

0.2

0.4

0.6

0.8

1.0
Double rarefaction, WENO, r = 3

2

1

0

1

2

u

0.0

0.1

0.2

0.3

0.4

p

0.0 0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

e

Figure 8.21: The double rarefaction test solved with WENO methods, r = 3, using
characteristic-wise and component-wise reconstruction, using 64 zones and a cfl of 0.5.
To compare with Godunov’s method see figure 8.11 and with PPM see figure 8.12.
The WENO method captures the edges of the rarefactions almost as well as the PPM
method, but is as almost as poor as Godunov’s method at the trivial contact at the
center. A less diffusive flux-splitting may help here. Increasing the reconstruction
order has little effect.
Ï hydro_examples: weno_euler.py

https://github.com/zingale/hydro_examples/blob/master/compressible/weno_euler.py

Part III

Elliptic and Parabolic Problems

Chapter9
Elliptic Equations and Multigrid

9.1 Elliptic equations

The simplest elliptic PDE is Laplace’s equation:

∇2ϕ = 0 (9.1)

Only slightly more complex is Poisson’s equation (Laplace + a source term):

∇2ϕ = f (9.2)

These equations can arise in electrostatics (for the electric potential), solving for the
gravitational potential from a mass distribution, or enforcing a divergence constraint
on a vector field (we’ll see this when we consider incompressible flow).

Another common elliptic equation is the Helmholtz equation:

(α−∇ · β∇)ϕ = f (9.3)

A Helmholtz equation can arise, for example, from a time-dependent equation (like
diffusion) by discretizing in time.

Notice that there is no time-dependence in any of these equations. The quantity ϕ is
specified instantaneously in the domain subject to boundary conditions. This makes
the solution methods very different then what we saw for hyperbolic problems.

9.2 Fourier Method

A direct way of solving a constant-coefficient elliptic equation is using Fourier trans-
forms. Using a general Fourier transform (which we consider here) works only for

git version: ae2370a3e0d5 . . . 163

164 Chapter 9. Elliptic Equations and Multigrid

i− 1 i i+ 1i− 1/2 i+ 1/2

φi−1

φi
φi+1

dφ
dx

∣∣
i−1/2

dφ
dx

∣∣
i+1/2d2φ

dx2

∣∣∣
i

Figure 9.1: The centerings of the first and second derivatives for a standard Laplacian
discretization. Our data, ϕ, is cell-centered. The first-derivatives, dϕ/dx, are edge-
centered, and the second-derivative, d2ϕ/dx2, is cell-centered.

periodic boundary conditions, but other basis functions (e.g., all sines or all cosines)
can be used for other boundary conditions.

Consider the Poisson equation:
∇2ϕ = f (9.4)

We will difference this in a second-order accurate fashion—see Figure 9.1. In 1-d, the
Laplacian is just the second-derivative. If our solution is defined at cell-centers, then
we first compute the first-derivative on cell edges:

dϕ

dx

∣∣∣∣
i−1/2

=
ϕi − ϕi−1

∆x
(9.5)

dϕ

dx

∣∣∣∣
i+1/2

=
ϕi+1 − ϕi

∆x
(9.6)

These are second-order accurate on the interface. We can then compute the second-
derivative at the cell-center by differencing these edge values:

d2ϕ

dx2

∣∣∣∣
i
=

dϕ/dx|i+1/2 − dϕ/dx|i−1/2

∆x
(9.7)

The extension to 2-d is straightforward. Thinking of the Laplacian as ∇2ϕ = ∇ · ∇ϕ,
we first compute the gradient of ϕ on edges:

[∇ϕ · x̂]i+1/2,j =
ϕi+1,j − ϕi,j

∆x
(9.8)

[∇ϕ · ŷ]i,j+1/2 =
ϕi,j+1 − ϕi,j

∆y
(9.9)

Again, since this is defined on edges, this represents a centered difference, and is
therefore second-order accurate. We then difference the edge-centered gradients to

9.2— Fourier Method 165

the center to get the Laplacian at cell-centers:

[∇2ϕ]i,j =
[∇ϕ · x̂]i+1/2,j − [∇ϕ · x̂]i−1/2,j

∆x
+

[∇ϕ · ŷ]i,j+1/2 − [∇ϕ · ŷ]i,j−1/2

∆y

=
ϕi+1,j − 2ϕi,j + ϕi−1,j

∆x2 +
ϕi,j+1 − 2ϕi,j + ϕi,j−1

∆y2 = fi,j (9.10)

Again, since we used a centered-difference of the edge values, this expression is
second-order accurate. This is the standard 5-point stencil for the 2-d Laplacian*.

We now assume that we have an FFT subroutine (see § 1.2.6) that can take our discrete
real-space data, ϕi,j and return the discrete Fourier coefficients, Φkx ,ky , and likewise
for the source term:

Φkx ,ky = F (ϕi,j) Fkx ,ky = F (fi,j) (9.11)

The power of the Fourier method is that derivatives in real space are multiplications
in Fourier space, which makes the solution process in Fourier space straightforward.

We now express ϕi,j and fi,j as sums over their Fourier components. Here we define
M as the number of grid points in the x-direction and N as the number of grid points
in the y-direction. As before, we are using i as the grid index, we will use I as the
imaginary unit:

ϕi,j =
1

MN

M−1

∑
kx=0

N−1

∑
ky=0

Φkx ,ky e2π Iikx/Me2π I jky/N (9.12)

fi,j =
1

MN

M−1

∑
kx=0

N−1

∑
ky=0

Fkx ,ky e2π Iikx/Me2π I jky/N (9.13)

Inserting these into the differenced equation, we have:

1
MN

M−1

∑
kx=0

N−1

∑
ky=0

{Φkx ,ky

∆x2 e2π I jky/N
[
e2π I(i+1)kx/M − 2e2π Iikx/M + e2π I(i−1)kx/M

]
+

Φkx ,ky

∆y2 e2π Iikx/M
[
e2π I(j+1)ky/N − 2e2π I jky/N + e2π I(j−1)ky/N

]}
=

1
MN

M−1

∑
kx=0

N−1

∑
ky=0

Fkx ,ky e2π Iikx/Me2π I jky/N (9.14)

We can bring the righthand side into the sums on the left, and we can then look at

*There are other possible second-order accurate stencils, including a 9-point stencil in 2-d, that are
less commonly used.

166 Chapter 9. Elliptic Equations and Multigrid

just a single (kx, ky) term in the series:

e2π Iikx/Me2π I jky/N
{

Φkx ,kx

∆x2

[
e2π Ikx/M + e−2π Ikx/M − 2

]
+

Φkx ,kx

∆y2

[
e2π Iky/N + e−2π Iky/N − 2

]
− Fkx ,ky

}
= 0 (9.15)

Simplifying, we have:

Φkx ,ky =
1
2

Fkx ,ky

[cos(2πkx/M)− 1]∆x−2 +
[
cos(2πky/N)− 1

]
∆y−2

(9.16)

This is the algebraic solution to the Poisson equation in Fourier (frequency) space.
Once we evaluate this, we can get the real-space solution by doing the inverse trans-
form:

ϕi,j = F−1(Φkx ,ky) (9.17)

We can test this technique with the source term:

f = 8π2 cos(4πy) [cos(4πx)− sin(4πx)]−
16π2 [sin(4πx) cos(2πy)2 + sin(2πx)2 cos(4πy)

]
(9.18)

which has the analytic solution†:

ϕ = sin(2πx)2 cos(4πy) + sin(4πx) cos(2πy)2 (9.19)

Note that this solution has the required periodic behavior. Figure 9.2 shows the
solution.

The main downside of this approach is that, because we solve for a single com-
ponent independently (Eq. 9.16), this only works for linear problems with constant
coefficients. This makes it an excellent choice for cosmological problems solving the
gravitational Poisson equation with periodic boundaries on all sides of the domain
(see, e.g., [41]). However, for a problem like:

∇ · (β∇ϕ) = f (9.20)

there would be “cross-talk” between the Fourier modes of β and ϕ, and we would not
be able to solve for a single mode of Φkx ,ky independently. We discuss more general
methods that work for these forms next.

†Note: throughout this chapter, we devise test problems by picking a function that meets the desired
boundary conditions and then inserting it into the analytic equation we are solving to find the righthand
side

9.3—Relaxation 167

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.5

0.0

0.5

1.0

1.5

102

number of zones

10−4

10−3

10−2

L2
 n

or
m

 o
f a

bs
 e

rro
r

O(∆x2)

Figure 9.2: (left) Solution to the Poisson equation on a 642 grid with source from
Eq. 9.18. (right) Error vs. the true solution as a function of resolution for the Fourier
method, showing second-order convergence.Ï hydro_examples: poisson_fft.py

9.3 Relaxation

Relaxation is an iterative technique, and as we will see shortly, it provides the basis
for the multigrid technique.

Consider Poisson’s equation, again differenced as:

ϕi+1,j − 2ϕi,j + ϕi−1,j

∆x2 +
ϕi,j+1 − 2ϕi,j + ϕi,j−1

∆y2 = fi,j (9.21)

For each zone (i, j), we couple in the zones ±1 in x and ±1 in y. For the moment,
consider the case where ∆x = ∆y. If we solve this discretized equation for ϕi,j, then
we have:

ϕi,j =
1
4
(ϕi+1,j + ϕi−1,j + ϕi,j+1 + ϕi,j−1 − ∆x2 fi,j) (9.22)

A similar expression exists for every zone in our domain, coupling all the zones
together. We can’t separate the solution of ϕi,j for the neighboring zones, but instead
can apply an iterative technique called relaxation (also sometimes called smoothing
because generally speaking the solution to elliptic equations is a smooth function) to
find the solution for ϕ everywhere.

Imagine an initial guess to ϕ: ϕ
(0)
i,j . We can improve that guess by using our difference

equation to define a new value of ϕ, ϕ
(1)
i,j :

ϕ
(1)
i,j =

1
4
(ϕ

(0)
i+1,j + ϕ

(0)
i−1,j + ϕ

(0)
i,j+1 + ϕ

(0)
i,j−1 − ∆x2 fi,j) (9.23)

or generally, the k + 1 iteration will see:

ϕ
(k+1)
i,j =

1
4
(ϕ

(k)
i+1,j + ϕ

(k)
i−1,j + ϕ

(k)
i,j+1 + ϕ

(k)
i,j−1 − ∆x2 fi,j) (9.24)

https://github.com/zingale/hydro_examples/blob/master/elliptic/poisson_fft.py

168 Chapter 9. Elliptic Equations and Multigrid

This will (slowly) converge to the true solution‡, since each zone is coupled to each
other zone (and to the boundary values that we need to specify—more on that in a
moment). This form of relaxation is called Jacobi iteration. To implement this, you
need two copies of ϕ—the old iteration value and the new iteration value.

An alternate way to do the relaxation is to update ϕi,j in place, as soon as the new
value is known. Thus the neighboring cells will see a mix of the old and new solu-
tions. We can express this in-place updating as:

ϕi,j ←
1
4
(ϕi+1,j + ϕi−1,j + ϕi,j+1 + ϕi,j−1 − ∆x2 fi,j) (9.25)

This only requires a single copy of ϕ to be stored. This technique is called Gauss-Seidel
iteration. A host of other relaxation methods exist, including linear combinations of
these two. An excellent discussion of these approaches, and their strengths and
weaknesses is given in [17].

Next consider the Helmholz equation with constant coefficients:

(α− β∇2)ϕ = f (9.26)

We can discretize this as:

αϕi,j − β

(
ϕi+1,j − 2ϕi,j + ϕi−1,j

∆x2 +
ϕi,j+1 − 2ϕi,j + ϕi,j−1

∆y2

)
= fi,j (9.27)

and the update of ϕi,j through relaxation is:

ϕi,j ←
(

fi,j +
β

∆x2 ϕi+1,j +
β

∆x2 ϕi−1,j +
β

∆y2 ϕi,j+1 +
β

∆y2 ϕi,j−1

)/(
α +

2β

∆x2 +
2β

∆y2

)

(9.28)
Notice that if α = 0, β = −1, and ∆x = ∆y, we recover the relaxation expression for
Poisson’s equation from above.

9.3.1 Boundary conditions

When using a cell-centered grid, no points fall exactly on the boundary, so we need
to use ghost cells to specify boundary conditions. A single ghost cell is sufficient
for the 5-point stencil used here. The common types of boundary conditions are
Dirichlet (specified value on the boundary), Neumann (specified first derivative on the
boundary), and periodic. Some restrictions apply (see discuss this later, in § 9.5).

Consider Dirichlet boundary conditions, specifying values ϕl on the left and ϕr on the
right boundaries.§ We’ll label the first zone inside the domain, at the left boundary,

‡Formally, convergence is only guaranteed if the matrix in our linear system is diagonally dominant.
The Laplacian used here is not quite diagonally domainant, but these methods still converge.

§If the value, ϕl or ϕr is zero, we call this a homogeneous boundary condition. Otherwise we call it an
inhomogeneous boundary condition

9.3—Relaxation 169

ii−1 i+1i−2 i+2

fi

∆x

ii−1 i+1 hi hi+1lolo−1

fi

∆x
left BC right BC

Figure 9.3: A node-centered (top) and cell-centered (bottom) finite difference grid
showing the data and domain boundaries. Notice that for the cell-centered grid, there
is no data point precisely at the boundary.

lo, and the last zone inside the domain, at the right boundary, hi—see Figure 9.3. To
second order, we can average the zone values on either side of the interface to get the
boundary condition:

ϕl =
1
2
(ϕlo + ϕlo−1) (9.29)

ϕr =
1
2
(ϕhi + ϕhi+1) (9.30)

This then tells us that the values we need to assign to the ghost cells are:

ϕlo−1 = 2ϕl − ϕlo (9.31)

ϕhi+1 = 2ϕr − ϕhi (9.32)

If we instead consider Neumann boundary conditions, we specify values of the
derivative on the boundaries: ϕx|l on the left and ϕx|r on the right. We note that
a single difference across the boundary is second-order accurate on the boundary (it
is a centered-difference there), so to second-order:

ϕx|l =
ϕlo − ϕlo−1

∆x
(9.33)

ϕx|r =
ϕhi+1 − ϕhi

∆x
(9.34)

170 Chapter 9. Elliptic Equations and Multigrid

This then tells us that the ghost cells are filled as:

ϕlo−1 = ϕlo − ∆x ϕx|l (9.35)

ϕhi+1 = ϕhi + ∆x ϕx|r (9.36)

9.3.2 Residual and true error

The residual error is a measure of how well our discrete solution satisfies the dis-
cretized equation. For the Poisson equation, we can the residual as:

ri,j = fi,j − (Lϕ)i,j (9.37)

and the residual error as:
ϵ(r) = ∥r∥ (9.38)

where L represents our discretized Laplacian. Note that r is the error with respect
to the discrete form of the equation. The true error is the measure of how well our
discrete solution approximates the true solution. If ϕtrue satisfies ∇2ϕtrue = f , then
the true error in each zone is

ei,j = ϕtrue(xi, yj)− ϕi,j (9.39)

and
ϵtrue = ∥ei,j∥ (9.40)

We can make ϵ(r) approach machine precision by performing more and more relax-
ation iterations, but after some point, this will no longer improve ϵtrue. The only way
to improve ϵtrue is to make ∆x and ∆y smaller. In practice we do not know the true
solution so we cannot compute ϵtrue and will instead have to rely on ϵ(r) to monitor
our error.

Note that since our operator is linear,

Le = Lϕtrue − Lϕ = f − Lϕ = r (9.41)

so the error in our solution obeys a Poisson equation with the residual as the source—
we’ll see this in the next section.

9.3.3 Norms

There are several different norms that are typically used in defining errors on the
grid. The L∞ norm (or ‘inf’-norm) is just the maximum error on the grid:

∥e∥∞ = max
i,j
{|ei,j|} (9.42)

This will pick up on local errors.

9.3—Relaxation 171

100 101 102 103 104

of iterations

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100
L2

 n
or

m
 o

f t
ru

e
er

ro
r (

so
lid

) a
nd

 re
sid

ua
l (

do
tte

d)
16
32
64

Figure 9.4: Gauss-Seidel relaxation applied to ϕxx = sin(x) with ϕ(0) = ϕ(1) = 0.
Shown are the L2 norm of the error compared with the true solution (solid lines) and
the L2 norm of the residual (dotted lines) for 3 different resolutions (16, 32, and 64

zones).
Ï hydro_examples: smooth.py

The L1 norm and L2 norms are more global.

∥e∥1 =
1
N ∑

i,j
|ei,j| (9.43)

∥e∥2 =

(
1
N ∑

i,j
|ei,j|2

)1/2

(9.44)

Generally, the measure in L2 falls between L∞ and L1. Regardless of the norm used,
if the problem converges, it should converge in all norms. For reference, the AMReX
library¶ uses L∞ in its multigrid solvers.

https://github.com/zingale/hydro_examples/blob/master/multigrid/smooth.py

172 Chapter 9. Elliptic Equations and Multigrid

9.3.4 Performance

Consider the simple Poisson problem|| on x ∈ [0, 1]:

ϕxx = sin(x), ϕ(0) = ϕ(1) = 0 (9.45)

The analytic solution to this is simply

ϕa(x) = − sin(x) + x sin(1) (9.46)

We can perform smoothing and compute both the error against the analytic solu-
tion (the ‘true’ error), e ≡ ∥ϕa(xi) − ϕi∥2 and the residual error, ∥ri∥2. Figure 9.4
shows these errors as a function of the number of smoothing iterations for 3 different
resolutions.

Notice that the true error stalls at a relatively high value—this is the truncation er-
ror of the method. From one resolution to the next, the true error changes as ∆x2,
indicating that we are converging as our method should. No additional amount of
smoothing will change this—we are getting the best answer to the problem we can
with our choice of discretization. In contrast, the residual error decreases to machine
precision levels—this is indicating that our solution is an exact solution to the discrete
equation (to roundoff-error). In practice, we can only monitor the residual error, not
the true error, and we hope that small residual error implies a small true error.

Figure 9.5 shows the error with respect to the true solution and of the residual for
pure smoothing in three different norms. The overall behavior is qualitative similar
regardless of the choice of norm.

To demonstrate the influence of the boundary conditions, Figure 9.6 shows the norm
of the true error for the same problem, but this time with a naive implementation of
the boundary conditions—simply initializing the ghost cell to the boundary value,
instead of averaging to the interface:

ϕlo−1 = ϕlo (9.47)

ϕhi+1 = ϕhi (9.48)

We see that with this mistake at the boundaries, the error of the entire solution is
affected, and we get only first-order convergence with resolution (this can be seen by
looking at the spacing of the curves). The previous solution, with the correct BCs is
shown for reference, and shows second-order convergence. It is important to note
that because every zone is linked to every other zone (and the boundary) in elliptic
problems, an error at the boundary can pollute the global solution.

¶https://github.com/amrex-codes
||This is the test problem used throughout A Multigrid Tutorial [17]. We use the same problem here

to allow for easy comparison to the discussions in that text.

https://github.com/amrex-codes

9.3—Relaxation 173

100 101 102 103 104

of iterations

10 13

10 11

10 9

10 7

10 5

10 3

10 1

No
rm

 o
f t

ru
e

er
ro

r (
so

lid
) a

nd
 re

sid
ua

l (
do

tte
d)

L1
L2
L-inf

Figure 9.5: Gauss-Seidel relaxation applied to ϕxx = sin(x) with ϕ(0) = ϕ(1) = 0.
This is like figure 9.4, but now we show the error in 3 different norms: L1, L2, and L∞.
Ï hydro_examples: smooth-norms.py

9.3.5 Frequency/wavelength-dependent error

We can think of the error in the solution as a superposition of high (short) and low
(long) frequency (wavelength) modes. Smoothing works really well to eliminate the
short wavelength noise quickly, but many iterations are needed to remove the long
wavelength noise (see Figure ??). A very important concept to understand here is
that when we talk about long wavelength error, we are expressing it in terms of the
number of zones across the feature, not as physical length. We can get an intuitive
feel for this behavior by thinking about how smoothing works. Every zone is coupled
to every other zone, and we can think about each zone seeing one more zone away
for each iteration. When the error is short wavelength, that means that there are
only a few zones across it, and after a few iterations, all of the zones have seen the
short wavelength error, and can eliminate it. For a very long wavelength error, many
iterations will be needed until the smoothing couples one zone to another that is a
wavelength away.

This behavior suggests that if we could represent our problem on a coarser grid, the
error will now be of shorter wavelength, and smoothing will be more efficient. This

https://github.com/zingale/hydro_examples/blob/master/multigrid/smooth-norms.py

174 Chapter 9. Elliptic Equations and Multigrid

100 101 102 103 104

of iterations

10 5

10 4

10 3

10 2

L2
 n

or
m

 o
f t

ru
e

er
ro

r

16
32
64

Figure 9.6: The same problem as in figure 9.4, but now we done with a naive first-
order boundary conditions—just initializing the ghost cell to the boundary value (solid
lines). We see that this achieves only first-order convergence in the true error. The
correct second-order implmentation is shown as the dotted lines.
Ï hydro_examples: smooth-badbcs.py

is the core idea behind multigrid, which we see next.

Exercise 9.1

Implement 1-d smoothing for the Laplace equation on cc-grid. Use an
initial guess for the solution:

ϕ0(x) =
1
3
(sin(2πx) + sin(2π 8x) + sin(2π 16x)) (9.49)

on a 128 zone grid with Dirichlet boundary conditions. This initial guess
has both high-frequency and low-frequency noise. Observe that the high-
frequency stuff goes after only a few smoothing iterations, but many it-
erations are needed to remove the low-frequency noise. You should see
something like Figure ??.

https://github.com/zingale/hydro_examples/blob/master/multigrid/smooth-badbcs.py

9.4—Multigrid 175

0.0 0.2 0.4 0.6 0.8 1.0
x

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8
ab

so
lu

te
 e

rro
r

smooth = 1
smooth = 10
smooth = 100
smooth = 1000

Figure 9.7: Error in the solution to ϕ′′ = 0 given an initial guess with 3 different
wavenumbers of noise. A 128 zone grid was used. The different curves are different
numbers of smoothing iterations.
Ï hydro_examples: smooth-modes.py

Figure 9.7 illustrates this behavior. We are solving the Laplace equation, ϕ′′ = 0 in 1-
d on [0, 1] with homogeneous Dirichlet boundary conditions. The solution is simply
ϕ = 0. We use Eq. 9.49 as an initial guess—this is a superposition of 3 different
modes. We see that the after just a few iterations, the shortest wavelength mode,
sin(2π16x) is no longer apparent in the error, and just the two longer wavelength
modes dominate. By 100 iterations, the error appears to be only due to the longest
wavelength mode, sin(2πx). Even after 1000 iterations, we still see this mode in the
error. This demonstrates that the longest wavelength modes in the error take the
longest to smooth away.

9.4 Multigrid

The text A Multigrid Tutorial [17] provides an excellent introduction to the mechanics
of multigrid. The discussion here differs mainly in that we are dealing with cell-

https://github.com/zingale/hydro_examples/blob/master/multigrid/smooth-modes.py

176 Chapter 9. Elliptic Equations and Multigrid

i− 2 i− 1 i i+ 1

j − 1 j

φfi−2 φfi−1 φfi φfi+1

φcj−1 φcj

Figure 9.8: A fine grid and corresponding underlying coarse grid.

centered/finite-volume data. We already saw that the treatment of boundary condi-
tions is more complicated because we do not have a point directly on the boundary.
The other complication comes in transferring the data from a fine grid to a coarser
grid, and back. Before we discuss the multigrid technique, we’ll understand how the
operations between grids work.

9.4.1 Prolongation and restriction on cell-centered grids

Multigrid relies on transferring the problem up and down a hierarchy of grids. The
process of moving the data from the fine grid to the coarse grid is called restriction.
The reverse process, moving data from the coarse grid to the fine grid is called pro-
longation. If the data on our grid is a conserved quantity, we want restriction and
prolongation to conserve the amount of stuff when transitioning data between the
fine and coarse grids.

1-d

Consider a 1-d finite-volume/cell-centered finite-difference grid shown in Figure 9.8—
we see a fine grid and the corresponding coarser grid. If ϕ represents a density, then
conservation requires:

ϕc
j =

1
∆xc (∆x f ϕ

f
i + ∆x f ϕ

f
i+1) (9.50)

9.4—Multigrid 177

or, for a jump in 2 in resolution (∆xc = 2∆x f),

ϕc
j =

1
2
(ϕ

f
i + ϕ

f
i+1) (9.51)

This latter form appears as a simple average to the interface of the two fine cells /
center of the corresponding coarse cell.

The simplest type of prolongation is simply direct injection:

ϕ
f
i = ϕc

j (9.52)

ϕ
f
i+1 = ϕc

j (9.53)

A higher-order method is to do linear reconstruction of the coarse data and then
average under the profile, e.g.,

ϕ(x) =
ϕc

j+1 − ϕc
j−1

2∆xc (x− xc
j) + ϕc

j (9.54)

To second-order, we can find the values of ϕ
f
i and ϕ

f
i+1 by evaluating ϕ(x) at the

x-coordinate corresponding to their cell-centers,

x f
i = xc

j −
∆xc

4
(9.55)

x f
i+1 = xc

j +
∆xc

4
(9.56)

giving

ϕ
f
i = ϕc

j −
1
8
(ϕc

j+1 − ϕc
j−1) (9.57)

ϕ
f
i+1 = ϕc

j +
1
8
(ϕc

j+1 − ϕc
j−1) (9.58)

Notice that this is conservative, since ∆x f (ϕ
f
i + ϕ

f
i+1) = ∆xcϕc

j .

2-d

Restriction from the fine grid to the coarse grid is straightforward. Since the fine cells
are perfectly enclosed by a single coarse cell, we simply average:

ϕc
i,j =

1
4
(ϕ

f
−− + ϕ

f
+− + ϕ

f
−+ + ϕ

f
++) (9.59)

Prolongation requires us to reconstruct the coarse data and use this reconstruction to
determine what the fine cell values are. For instance, a linear reconstruction of the
coarse data in x and y is:

ϕ(x, y) =
mx

∆xc (x− xc
i) +

my

∆yc (y− yc
j) + ϕc

i,j (9.60)

178 Chapter 9. Elliptic Equations and Multigrid

φ c
i+1,j

φ c
i,j+1

φ c
i−1,j

φ c
i,j−1

i−1 i i+1

j−1

j

j+1

φ c
i,j

φ f
−−

φ f
−+

φ f
+−

φ f
+ +

Figure 9.9: Four fine cells and the underlying coarse grid. For prolongation, the fine
cells in red are initialized from a coarse parent. The gray coarse cells are used in the
reconstruction of the coarse data. For restriction, the fine cells are averaged to the
underlying coarse cell.

with slopes:

mx =
1
2
(ϕc

i+1,j − ϕc
i−1,j) (9.61)

my =
1
2
(ϕc

i,j+1 − ϕc
i,j−1) (9.62)

When averaged over the coarse cell, ϕ(x, y) recovers the average, ϕc
i,j in that cell (this

means that our interpolant is conservative). We can evaluate the value in the fine
cells by evaluating ϕ(x, y) at the center of the fine cells,

x f
± = xc

i ±
∆xc

4
(9.63)

y f
± = yc

j ±
∆yc

4
(9.64)

(9.65)

9.4—Multigrid 179

This gives

ϕ
f
±± = ϕc

i,j ±
1
4

mx ±
1
4

my (9.66)

(Note: you would get the same expression if you averaged ϕ(x, y) over the fine cell.)

There are other options for prolongation and restriction, both of higher and lower
order accuracy. However, the methods above seem to work well.

9.4.2 Multigrid cycles

The basic idea of multigrid** is to smooth a little on the current grid solving Lϕ = f ,
compute the residual, r, then restrict r to a coarser grid and smooth on that grid
solving Le = r, restrict again, Once you reach a sufficiently coarse grid, the
problem solved exactly. Then the data is moved up to the finer grids, a process called
prolongation. The error on the coarse grid, e, is prolonged to the finer grid. This error
is then used to correct the solution on the finer grid, some smoothing is done, and
then the data is prolonged up again.

Note: on the coarse grids, you are not solving the original system, but rather an error
equation. If the boundary conditions in the original system are inhomogeneous, the
boundary conditions for the error equations are now homogeneous. This must be
understood by any ghost cell filling routines.

There are many different forms of the multigrid process. The simplest is called the
V-cycle. Here you start of the fine grid, restrict down to the coarsest, solve, and then
prolong back up to the finest. The flow looks like a ‘V’. You continue with additional
V-cycles until the residual error is smaller than your tolerance.

9.4.3 Bottom solver

Once the grid is sufficiently coarse, the linear system is small enough to be solved
directly. This is the bottom solver operation. In the most ideal case, where the
finest grid is some power of 2, Nx = Ny = 2n, then the multigrid procedure can
continue down until a 2 × 2 grid is created (Figure 9.10 illustrates this idea for a
one-dimensional grid). This is the coarsest grid upon which one can still impose
boundary conditions. With this small grid, just doing additional smoothing is suffi-
cient enough to ‘solve’ the problem. No fancy bottom solver is needed.

For a general rectangular grid or one that is not a power of 2, the coarsest grid will
likely be larger. For the general case, a linear system solver like conjugate gradient
(or a variant) is used on the coarsest grid.

**In these discussions, we use multigrid to mean geometric multigrid, where the coarsening is done to
the grid geometry directly. The alternative is algebraic multigrid, where it is the structure of the matrix
in the linear system itself that is coarsened.

180 Chapter 9. Elliptic Equations and Multigrid

Figure 9.10: Illustration of the hierarchy of grids leading to the coarsest 2-zone grid
(in one-dimension). Each grid has a single ghost cell to accommodate boundary con-
ditions.

9.4.4 Boundary conditions throughout the hierarchy

The general inhomogeneous boundary conditions from Eqs. 9.31 and 9.35 apply to
the finest level. But because we are solving the residual equation of the coarsest levels
in the multigrid hierarchy, the boundary conditions on Le = r are all homogeneous
(but of the same type, Dirichlet, Neumann, or periodic, as the fine level).

Implementing these boundary conditions in your multigrid solver means that you
will have separate actions for the fine level (where inhomogeneous boundaries may
apply) and the coarser levels (where you will always be homogeneous).

An alternate way to enforce boundary conditions is via boundary charges. For inhomo-
geneous boundary conditions, boundary charges can be used to convert the BCs to
homogeneous BCs. This has the advantage of allowing the ghost cell filling routines
only deal with the homogeneous case.

Consider the one-dimensional Poisson equation, near the left boundary our dis-
cretized equation appears as:

ϕlo−1 − 2ϕlo + ϕlo+1

∆x2 = flo (9.67)

9.4—Multigrid 181

Inhomogeneous BCs at the left boundary would give the condition:

ϕlo−1 = 2ϕl − ϕlo (9.68)

Substituting this into the discrete equation, we have:

2ϕl − ϕlo − 2ϕlo + ϕlo+1

∆x2 = flo (9.69)

Bringing the boundary condition value over to the RHS, we see

−3ϕlo + ϕlo+1

∆x2 = flo −
2ϕl

∆x2 (9.70)

Now the left side looks precisely like the differenced Poisson equation with homoge-
neous Dirichlet BCs. The RHS has an additional ‘charge’ that captures the boundary
value. By modifying the source term, f , in the multigrid solver to include this charge,
we can use the homogeneous ghost cell filling routines throughout the multigrid al-
gorithm. This technique is discussed a bit in [26].

Note that the form of the boundary charge will depend on the form of the elliptic
equation—the expressions derived above apply only for ∇2ϕ = f .

9.4.5 Stopping criteria

Repeated V-cycles are done until:

∥r∥ < ϵ∥ f ∥ (9.71)

on the finest grid, for some user-input tolerance, ϵ. Here, ∥ f ∥ is called the source
norm. If ∥ f ∥ = 0, then we stop when

∥r∥ < ϵ (9.72)

Picking the tolerance ϵ is sometimes problem-dependent, and generally speaking, a
problem with a large number of zones will require a looser tolerance.

The general rule-of-thumb is that each V-cycle should reduce your residual by about
1 order of magnitude. It is important that your bottom solver solves the coarse
problem to a tolerance of 10−3 or 10−4 in order for the solver to converge. Figure 9.11

shows the true and residual errors for ϕxx = sin(x) as a function of V-cycle number,
illustrating the expected performance.

The overall convergence of the multigrid algorithm is limited by the discretization
of the Laplacian operator used and the implementation of the boundary conditions.
Figure 9.12 shows the error in the solution as the number of zones is increased—
demonstrating second-order convergence for our implementation.

182 Chapter 9. Elliptic Equations and Multigrid

0 2 4 6 8 10 12
of V-cycles

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

L2
 n
or
m
 o
f e

rro
r

||e||
||r||

Figure 9.11: Error in the multigrid solution to our model problem (ϕxx = sin(x)) as a
function of V-cycle. We see that the true error, ∥e∥ stalls at truncation error while the
residual error, ∥r∥ reaches roundoff error, the same behavior as seen with smoothing
alone (as expected).
Ï hydro_examples: mg_test.py

9.5 Solvability

For ∇2ϕ = f with periodic or Neumann boundaries all around, the sum of f must
equal 0 otherwise the solution will not converge. Instead, we will simply find the
solution increase each V-cycle. This is seen as follows:

∫

Ω
f dΩ =

∫

Ω
∇2ϕdΩ =

∫

∂Ω
∇ϕ · ndS = 0 (9.73)

For all homogeneous Neumann boundaries, we have ∇ϕ · dS = 0 by construction,
so that integral is zero, requiring that the source integrate to zero. If the Neumann
boundaries are inhomogeneous, there is still a solvability condition on f based on
the sum on the boundary values.

A simple example of solvability is:

ϕ′′ = 0 (9.74)

https://github.com/zingale/hydro_examples/blob/master/multigrid/mg_test.py

9.6—Going Further 183

101 102 103

N

10-8

10-7

10-6

10-5

10-4

10-3

L2
 n
o
rm

 o
f
a
b
so
lu
te
 e
rr
o
r

Multigrid convergence

O(∆x2)

Figure 9.12: Convergence of the multigrid algorithm.
Ï hydro_examples: mg_converge.py

on [a, b] with

ϕ′(a) = A (9.75)

ϕ′(b) = B (9.76)

We can integrate ϕ′′ = 0 to get ϕ(x) = αx+ β where α and β are integration constants.
But note that this is just a straight line, with a single slope, α, so it is not possible to
specify two unique slopes, A and B at the boundary unless there is a non-zero source
term.

For all periodic boundaries, we have ∇ϕ|left = −∇ϕ|right on the left and right bound-
aries by definition of the periodicity (and similarly for the top and bottom). Again
this implies that f must integrate to zero.

Sometimes, with periodic boundary conditions all around, you need to enforce that
f integrate to zero numerically to test convergence. This is discussed in § 15.2.1.

9.6 Going Further

9.6.1 Red-black Ordering

When using domain decomposition to spread the problem across parallel processors,
the smoothing is often done as red-black Gauss-Seidel. In this ordering, you imagine

https://github.com/zingale/hydro_examples/blob/master/multigrid/mg_converge.py

184 Chapter 9. Elliptic Equations and Multigrid

Figure 9.13: The red-black ordering of zones.

the grid to be a checkerboard (see Figure 9.13). In the first Gauss-Seidel pass you
update the red squares and in the second, the black squares. The advantage is that
when updating the red, you can be sure that none of the zones you depend on (the
neighboring black zones) will change. This makes the decomposition parallel. Note:
this works for the standard 5-point Laplacian. If you are doing some other operator
with a different stencil, then this decomposition may no longer hold.

9.6.2 More General Elliptic Equations

The most general second-order elliptic equation takes the form:

αϕ +∇ · (β∇ϕ) + γ · ∇ϕ +∇ · (ζϕ) = f (9.77)

Here, γ and ζ are vectors. Solving a general elliptic equation of this form can be
accomplished with multigrid using the same basic ideas here. The main change is
that the smoothing algorithm and the construction of the residual will need to dis-
cretize the more general operator, and these coefficients will need to be restricted to
the coarser grids (some on edges). This is explored in § 15.2 for a variable-coefficient
Poisson equation:

∇ · (β∇ϕ) = f (9.78)

Chapter10
Diffusion

10.1 Diffusion

Physically, a diffusive process obeys Fick’s law—the quantity that is diffusing, ϕ,
moves from higher to lower concentration at a rate proportional to the gradient,

F = −k∇ϕ (10.1)

If we think of this as a diffusive flux, then we can write the time-rate-of-change of ϕ

as a conservation law:
ϕt +∇ · F(ϕ) = 0 (10.2)

This gives rise to the diffusion equation:

ϕt = ∇ · (k∇ϕ) (10.3)

Diffusion has a time-dependence like the advection equations we already saw, but
also has a global character like an elliptic problem. Unlike advection, there is no sense
of upwinding in diffusion. As we will see, we can cast our differenced equations in
a form reminiscent of an elliptic problem.

In one-dimension, and assuming that the diffusion coefficient, k, is constant, we have

∂ϕ

∂t
=

∂

∂x

(
k

∂ϕ

∂x

)
(10.4)

The diffusion equation can describe thermal diffusion (for example, as part of the en-
ergy equation in compressible flow), species/mass diffusion for multi-species flows,
or the viscous terms in incompressible flows. In this form, the diffusion coefficient
(or conductivity), k, can be a function of x, or even ϕ.

git version: ae2370a3e0d5 . . . 185

186 Chapter 10. Diffusion

We will consider a constant diffusion coefficient as our model problem:

∂ϕ

∂t
= k

∂2ϕ

∂x2 (10.5)

The diffusion equation is the prototypical parabolic PDE. The basic behavior of the
diffusion equation is to take strongly peaked concentrations of ϕ and smooth them
out with time.

10.2 Explicit differencing

A nice overview of the discretizations for diffusion and their stability is given in [64].
The simplest way to difference this equation is explicit in time (i.e., the righthand side
depends only on the old state):

ϕn+1
i − ϕn

i
∆t

= k
ϕn

i+1 − 2ϕn
i + ϕn

i−1

∆x2 (10.6)

This is second-order accurate in space, but only first order accurate in time (since the
righthand side is not centered in time).

As with the advection equation, when differenced explicitly, there is a constraint on
the timestep required for stability. Looking at the growth of a single Fourier mode,
ϕn

i = AneiIθ with I =
√
−1, we find:

An+1

An = 1 + 2
k∆t
∆x2 (cos θ − 1) (10.7)

Stability requires that |An+1/An| ≤ 1, which can only be true if 2k∆t/∆x2 ≤ 1.
Therefore, our timestep constraint in this case is

∆t <
1
2

∆x2

k
(10.8)

As with advection, we often write the timestep as

∆t =
C
2

∆x2

k
(10.9)

where C is a constant, C < 1. Note the ∆x2 dependence—this constraint can become
really restrictive.

Exercise 10.1

Derive Eq. 10.7 by inserting ϕn
i = Aneijθ into Eq. 10.6

10.2—Explicit differencing 187

To complete the solution, we need boundary conditions at the left (xl) and right (xr)
boundaries. These are typically either Dirichlet:

ϕ|x=xl = ϕl (10.10)

ϕ|x=xr = ϕr (10.11)

or Neumann:

ϕx|x=xl = ϕx|l (10.12)

ϕx|x=xr = ϕx|r (10.13)

Physically, a Dirichlet BC means fixing the value of ϕ (e.g., temperature) on the
boundary. A Neumann BC means fixing the flux on the boundary.

Like with advection, it helps to have a good test problem to evaluate our methods
for diffusion. We can use the fact that the diffusion of a Gaussian is a Gaussian with
a smaller amplitude and greaterwidth.

Exercise 10.2

Write a one-dimensional explicit diffusion solver for the domain [0, 1]
with Neumann boundary conditions at each end and k = 1, using the
discretization of Eq. 10.6.
If we begin with a Gaussian, the resulting solution is also a Gaussian,
giving a solutiona:

ϕ(x, t) = (ϕ2 − ϕ1)

√
t0

t + t0
e−

1
4 (x−xc)2/k(t+t0) + ϕ1 (10.14)

Initialize our problem with t = 0, and take t0 = 0.001, ϕ1 = 1, and
ϕ2 = 2, and xc is the coordinate of the center of the domain. Run until
t = 0.01 and compare to the analytic solution above.

aNote: the 2- and 3-d solutions are slightly different than this 1-d solution

Figure 10.1 shows the solution for 64 zones and a value of C = 0.8. We see good
agreement with the analytic solution. Note that if the initial conditions are not well
resolve initially, then the solution will be bad (see Figure 10.2).

As with advection, if we exceed the timestep limit (C > 1), then the solution is
unstable. This is shown in Figure 10.3.

Our spatial order-of-accuracy is second-order. Figure 10.4 shows the error as a func-
tion of number of zones, using the L2 norm of the solution with respect to the analytic
solution. Notice that at the coarsest resolution the error is very high—we are not re-
solving the initial conditions well enough to have a meaningful solution. At higher

188 Chapter 10. Diffusion

0.35 0.40 0.45 0.50 0.55 0.60 0.65
x

1.0

1.2

1.4

1.6

1.8

φ

explicit diffusion, nx = 64, C = 0.80

t= 8e− 08 s
t= 8e− 07 s
t= 8e− 06 s
t= 8e− 05 s
t= 0.0008 s

Figure 10.1: Diffusion of a Gaussian using the explicit differencing of Eq. 10.6 with 64

zones and C = 0.8, shown at several times. The dotted line is the analytic solution.
Ï hydro_examples: diffusion_explicit.py

resolutions, we converge as O(∆x2). Recall though that our method has a truncation
error that is O(∆t) + O(∆x2), but we don’t see the first-order in time scaling. This is
because of the timestep restriction. Since ∆t ∼ ∆x2/k, as we cut ∆x by 2, ∆t drops by
4, so the timestep choice makes our O(∆t) truncation error go as O(∆x2).

Note, this is not the case for advection, where ∆t ∼ ∆x, so for our advection dis-
cretizations we will want the same order of accuracy in our spatial and temporal
discretizations.

10.3 Implicit with direct solve

Recall that an implicit discretization of advection did not have a timestep restriction
for stability. The same holds true for diffusion. A backward-Euler implicit discretiza-
tion would be:

ϕn+1
i − ϕn

i
∆t

= k
ϕn+1

i+1 − 2ϕn+1
i + ϕn+1

i−1

∆x2 (10.15)

https://github.com/zingale/hydro_examples/blob/master/diffusion/diffusion_explicit.py

10.3—Implicit with direct solve 189

0.0 0.2 0.4 0.6 0.8 1.0
x

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

φ

Explicit diffusion, C = 0.80, t = 0.005

N = 16
N = 32
N = 64
N = 128
N = 256
N = 512

Figure 10.2: Diffusion of a Gaussian using the explicit differencing of Eq. 10.6 with
different resolutions. several times. The dotted line is the analytic solution.
Ï hydro_examples: diffusion_explicit.py

The only difference with Eq. 10.6 is the time-level of ϕ on the righthand side. Defin-
ing:

α ≡ k
∆t

∆x2 (10.16)

This is still first-order in time. We can do the stability analysis to see the growth of a
mode, giving,

An+1

An =
1

1− 2α(cos θ − 1)
(10.17)

We see that |An+1/An| ≤ 1 for all θ, α, so this discretization is unconditionally stable.
However, the timestep will still determine the accuracy.

We can write Eq. 10.15 as:

−αϕn+1
i+1 + (1 + 2α)ϕn+1

i − αϕn+1
i−1 = ϕn

i (10.18)

This is a set of coupled algebraic equations. We can write this in matrix form. Using
a cell-centered grid, we will solve for the values [lo, hi]. The implicit method can use
any C > 0.

https://github.com/zingale/hydro_examples/blob/master/diffusion/diffusion_explicit.py

190 Chapter 10. Diffusion

0.35 0.40 0.45 0.50 0.55 0.60 0.65

x

0.75

0.50

0.25

0.00

0.25

0.50

0.75

φ

×1013 explicit diffusion, nx = 64, C = 2.00, t = 0.005

Figure 10.3: Diffusion of a Gaussian using the explicit differencing of Eq. 10.6 with 64

zones, but a timestep with C > 1, showing that the solution is unstable.
Ï hydro_examples: diffusion_explicit.py

We specify boundary conditions by modifying the stencil (Eq. 10.18) for the updates
to lo and hi*. For example, homogeneous Neumann BCs on the left mean:

ϕlo−1 = ϕlo (10.19)

and substituting this into Eq 10.18, the update for the leftmost cell is:

(1 + α)ϕn+1
lo − αϕn+1

lo+1 = ϕn
lo (10.20)

If we choose Dirichlet BCs on the right (ϕ|x=xl = A), then:

ϕhi+1 = 2A− ϕhi (10.21)

Substituting this into Eq 10.18 the update for the rightmost cell is:

−αϕn+1
hi−1 + (1 + 3α)ϕn+1

hi = ϕn
hi + α2A (10.22)

*Here, we use the lo, hi notation for grid indices from § 3.3.3

https://github.com/zingale/hydro_examples/blob/master/diffusion/diffusion_explicit.py

10.3—Implicit with direct solve 191

102

N

10−6

10−5

10−4

10−3

10−2

10−1

L2
 n

or
m

 o
f a

bs
ol

ut
e

er
ro

r
Convergence of Explicit Diffusion, C = 0.80, t = 0.005

O(∆x2)

explicit diffusion

Figure 10.4: Error convergence with resolution of the explicit diffusion using the dif-
ferencing of Eq. 10.6
Ï hydro_examples: diffusion_explicit.py

For all other interior cells, the stencil is unchanged. The resulting system appears as
a tridiagonal matrix.

1 + α −α

−α 1 + 2α −α

−α 1 + 2α −α

.
.

−α 1 + 2α −α

−α 1 + 3α

ϕn+1
lo

ϕn+1
lo+1

ϕn+1
lo+2
...
...

ϕn+1
hi−1

ϕn+1
hi

=

ϕn
lo

ϕn
lo+1

ϕn
lo+2
...
...

ϕn
hi−1

ϕn
hi + α2A

(10.23)
This can be solved by standard matrix operations, using a tridiagonal solvers (for
example). Notice that the ghost cells do not appear in this linear system—we are
only updating the interior points.

https://github.com/zingale/hydro_examples/blob/master/diffusion/diffusion_explicit.py

192 Chapter 10. Diffusion

Crank-Nicolson time discretization

A second-order in time discretization requires us to center the righthand side in time.
We do this as:

ϕn+1
i − ϕn

i
∆t

=
k
2

(
ϕn

i+1 − 2ϕn
i + ϕn

i−1

∆x2 +
ϕn+1

i+1 − 2ϕn+1
i + ϕn+1

i−1

∆x2

)
(10.24)

This looks like the average of the explicit and implicit systems we just saw. This time-
discretization is called Crank-Nicolson. Again, using α ≡ k∆t/∆x2, and grouping all
the n + 1 terms on the left we have:

ϕn+1
i − α

2

(
ϕn+1

i+1 − 2ϕn+1
i + ϕn+1

i−1

)
= ϕn

i +
α

2
(
ϕn

i+1 − 2ϕn
i + ϕn

i−1
)

(10.25)

and grouping together the the n + 1 terms by zone, we have:

−α

2
ϕn+1

i+1 + (1 + α)ϕn+1
i − α

2
ϕn+1

i−1 = ϕn
i +

α

2
(
ϕn

i+1 − 2ϕn
i + ϕn

i−1
)

(10.26)

Considering homogeneous Neumann boundary conditions on the left and right, we
again have ϕn+1

lo−1 = ϕn+1
lo and ϕn+1

hi+1 = ϕn+1
hi , and our stencil at the boundary becomes

−α

2
ϕn+1

lo+1 +
(

1 +
α

2

)
ϕn+1

lo = ϕn
lo +

α

2
(
ϕn

lo+1 − 2ϕn
lo + ϕn

lo−1
)

(10.27)

The matrix form of this system is:

1 + α
2 − α

2

− α
2 1 + α − α

2

− α
2 1 + α − α

2
.

.

− α
2 1 + α − α

2

− α
2 1 + α

2

ϕn+1
lo

ϕn+1
lo+1

ϕn+1
lo+2
...
...

ϕn+1
hi−1

ϕn+1
hi

=

ϕn
lo +

k∆t
2 [∇2ϕ]nlo

ϕn
lo+1 +

k∆t
2 [∇2ϕ]nlo+1

ϕn
lo+2 +

k∆t
2 [∇2ϕ]nlo+2
...
...

ϕn
hi−1 +

k∆t
2 [∇2ϕ]nhi−1

ϕn
hi +

k∆t
2 [∇2ϕ]nhi

(10.28)

Figure 10.5 shows the result of using α = 0.8 and α = 8.0. We see that they are both
stable, but that the smaller timestep is closer to the analytic solution (especially at
early times).

10.3—Implicit with direct solve 193

0.35 0.40 0.45 0.50 0.55 0.60 0.65
x

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

φ

implicit diffusion, N = 128, C = 0.80

t= 0.000190735 s
t= 0.00038147 s
t= 0.000762939 s
t= 0.00152588 s
t= 0.00305176 s

0.35 0.40 0.45 0.50 0.55 0.60 0.65
x

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

φ

implicit diffusion, N = 128, C = 8.00

t= 0.000190735 s
t= 0.00038147 s
t= 0.000762939 s
t= 0.00152588 s
t= 0.00305176 s

Figure 10.5: Implicit diffusion of a Gaussian (with Crank-Nicolson discretization) with
C = 0.8 and C = 8.0. The exact solution at each time is shown as the dotted line.
Ï hydro_examples: diffusion_implicit.py

Exercise 10.3

Write a one-dimensional implicit diffusion solver for the domain [0, 1]
with Neumann boundary conditions at each end and k = 1. Your solver
should use a tridiagonal solver and initialize a matrix like that above. Use

https://github.com/zingale/hydro_examples/blob/master/diffusion/diffusion_implicit.py

194 Chapter 10. Diffusion

a timestep close to the explicit step, a grid with N = 128 zones.
Use a Gaussian for your initial conditions (as you did for the explicit
problem.

10.4 Implicit multi-dimensional diffusion via multigrid

Instead of doing a direct solve of the matrix form of the system, we can use multigrid
techniques. Consider the Crank-Nicolson system we just looked at:

ϕn+1
i − ϕn

i
∆t

=
1
2

(
k∇2ϕn

i + k∇2ϕn+1
i

)
(10.29)

Grouping all the n + 1 terms on the left, we find:

ϕn+1
i − ∆t

2
k∇2ϕn+1

i = ϕn
i +

∆t
2

k∇2ϕn
i (10.30)

This is in the form of a constant-coefficient Helmholtz equation,

(α− β∇2)ϕn+1 = f (10.31)

with

α = 1 (10.32)

β =
∆t
2

k (10.33)

f = ϕn +
∆t
2

k∇2ϕn (10.34)

This can be solved using multigrid techniques with a Helmholtz operator. The same
boundary conditions discussed in Chapter 9 apply here. The main difference between
the multigrid technique for the Poisson problem and the Helmholtz problem is the
form of the smoother. In 1-d, we discretize Eq. 10.31 with a second-order difference
expression for the second derivative, and isolate ϕi, giving a smoothing operation of
the form:

ϕi ←
(

fi +
β

∆x2 [ϕi+1 + ϕi−1]

)/(
α +

2β

∆x2

)
(10.35)

Note that when you take α = 0 and β = −1 in Eq. 10.35, the smoothing operation
reduces to the form that we saw in Chapter 9 for just the Poisson equation.

Recall, when using multigrid, you do not need to actually construct the matrix. This
is usually the most efficient way to implement diffusion in a multi-dimensional sim-
ulation code, especially when distributing the grid across parallel processors. Since
the discretization is the same as the direct matrix solve, Eq. 10.28, the result will be
exactly the same (to the tolerance of the multigrid solver).

10.4—Implicit multi-dimensional diffusion via multigrid 195

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0
y

phi

1.0

1.2

1.4

1.6

1.8

t = 0.00000

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

phi

1.001

1.002

1.003

1.004

t = 0.02000

Figure 10.6: Diffusion of a Gaussian in 2-d with 1282 zones using k = 1.0 and C = 2.0.
This used Crank-Nicolson time-discretization and multigrid. This can be run in pyro
as ./pyro diffusion gaussian inputs.diffusion.

Figure 10.7 shows the result of diffusing a Gaussian profile on a 2-d grid using Crank-
Nicolson time-discretization, a constant coefficient, and multigrid to solve the dis-
cretized system, using pyro. There is a good agreement between the analytic and
numerical solution, showing that this scheme models the diffusion of an initially
resolved Gaussian well.

Exercise 10.4

The diffusion solver in pyro uses Crank-Nicolson differencing in time.
Modify the solver to do first-order backward Euler. This will change the
form of the linear system (coefficients and righthand side), but should not
require any changes to the multigrid solver itself.
Compare the solution with the Crank-Nicolson solution for a very
coarsely-resolved Gaussian and a finely-resolved Gaussian.

10.4.1 Convergence

One needs to be careful with the Crank-Nicolson discretization. If the initial data
is under-resolved and you are taking a big timestep (C ≫ 1), then the method can
be unstable. Figure 10.8 shows such a case for the Gaussian diffusion with Crank-
Nicolson discretization and 64 zones with C = 10. For this reason, simulation codes
often drop down to the simple backwards difference time-discretization for implicit
diffusion of under-resolved flows. A good discussion of the different types of stability
can be found in [47].

196 Chapter 10. Diffusion

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
r

1.00

1.01

1.02

1.03

1.04

1.05

φ

Figure 10.7: A comparison of 2-d implicit diffusion from Figure 10.6 with the analytic
solution at several times. The 2-d solution was averaged over angles to yield a profile
as a function of radius, using the gauss_diffusion_compare.py in pyro.

Figure 10.9 shows the convergence of several of the methods discussed here on the
diffusion of a Gaussian, for two different Courant numbers, 0.8 and 8.0. For the
lower case, we can do the diffusion explicitly as well as implicitly, and we see that
all methods show the same trends, with the Crank-Nicolson method being the most
accurate (since it is the only second-order-in-time method shown). For the larger
timestep, we only run the implicit methods (the explicit case is unstable). We see
that at coarse resolution, the errors in the methods are similar—this is because the
solution is unresolved. At higher resolution, the error for the Crank-Nicolson method
is an order of magnitude lower.

10.5 Non-constant Conductivity

For a non-constant conductivity, our equation has the form:

∂ϕ

∂t
=

∂

∂x

(
k

∂ϕ

∂x

)
(10.36)

10.5—Non-constant Conductivity 197

0.2 0.3 0.4 0.5 0.6 0.7 0.8
x

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

1.16

φ
implicit diffusion, N = 64, C = 10.00, t = 0.001

Figure 10.8: Crank-Nicolson diffusion of a Gaussian on under-resolved initial data
with a large timestep. Here we use 64 zones and C = 10.
Ï hydro_examples: diffusion_implicit.py

For the case where k = k(x), we discretize as:

ϕn+1
i − ϕn

i
∆t

=
{k∇ϕ}i+1/2 − {k∇ϕ}i−1/2

∆x
(10.37)

Here we need the values of k at the interfaces, ki−1/2 and ki+1/2. We can get these from
the cell-centered values in a variety of ways including straight-averaging:

ki+1/2 =
1
2
(ki + ki+1) (10.38)

or averaging the inverses:
1

ki+1/2

=
1
2

(
1
ki

+
1

ki+1

)
(10.39)

The actual form should be motivated by the physics

Slightly more complicated are state-dependent transport coefficients—the transport
coefficients themselves depend on the quantity being diffused:

ϕn+1
i − ϕn

i
∆t

=
1
2

{
∇ · [k(ϕn)∇ϕn]i +∇ · [k(ϕn+1)∇ϕn+1]i

}
(10.40)

https://github.com/zingale/hydro_examples/blob/master/diffusion/diffusion_implicit.py

198 Chapter 10. Diffusion

102

N

10−6

10−5

10−4

10−3

10−2

10−1

L2
 n

or
m

 o
f a

bs
ol

ut
e

er
ro

r

diffusion convergence, C = 0.80, t = 0.005

O(∆x2)

C-N implicit diffusion
backwards-difference diffusion
forward-difference (explicit) diffusion

102

N

10−6

10−5

10−4

10−3

10−2

10−1

L2
 n

or
m

 o
f a

bs
ol

ut
e

er
ro

r

diffusion convergence, C = 8.00, t = 0.005

O(∆x2)

C-N implicit diffusion
backwards-difference diffusion

Figure 10.9: Convergence of the explicit, backward-difference, and Crank-Nicolson
diffusion methods for C = 0.8 (top) and C = 8.0 (bottom). For the latter case, the
explicit method is not valid and is not shown. We see that the Crank-Nicolson method
has the lowest error, and when resolving the data, has second-order convergence.
Ï hydro_examples: diff_converge.py

(for example, with thermal diffusion, the conductivity can be temperature depen-
dent). In this case, we can achieve second-order accuracy by doing a predictor-
corrector. First we diffuse with the transport coefficients evaluated at the old time,

https://github.com/zingale/hydro_examples/blob/master/diffusion/diff_converge.py

10.6—Diffusion in Hydrodynamics 199

giving a provisional state, ϕ⋆:

ϕ⋆
i − ϕn

i
∆t

=
1
2
{∇ · [k(ϕn)∇ϕn] +∇ · [k(ϕn)∇ϕ⋆]} (10.41)

Then we redo the diffusion, evaluating k with ϕ⋆ to center the righthand side in time,
giving the new state, ϕn+1:

ϕn+1
i − ϕn

i
∆t

=
1
2

{
∇ · [k(ϕn)∇ϕn] +∇ · [k(ϕ⋆)∇ϕn+1]

}
(10.42)

This is the approach used, for example, in [13].

10.6 Diffusion in Hydrodynamics

Often we find diffusion represented as one of many physical processes in a single
equation. For example, consider the internal energy equation with both reactions
and diffusion:

ρ
∂e
∂t

+ ρU · ∇e + p∇ ·U = ∇ · k∇T + ρS (10.43)

This can be solved via an explicit-implicit discretization. First the advection terms
are computed as:

A = ρU · ∇e + p∇ ·U (10.44)

Then the advective-diffusive part is solved implicitly. Expressing e = e(ρ, T), and
using the chain rule,

∇e = eT∇T + eρ∇ρ (10.45)

where eT = ∂e/∂T|ρ ≡ cv is the specific heat at constant volume and eρ = ∂e/∂ρ|T.
Rewriting, we have:

∇T = (∇e− eρ∇ρ)/cv (10.46)

and then
ρ

∂e
∂t

= ∇ · (k/cv)∇e−∇ · (keρ/cv)∇ρ− A + ρS (10.47)

This is now a diffusion equation for e, which can be solved by the techniques de-
scribed above. Note: if the transport coefficients (including cv, eρ) are dependent on
e, then we still need to do a predictor-corrector method here. This is discussed, for
example, in [13, 48]. A simple case for this type of advection-diffusion is also shown
in § 11.2.

Part IV

Multiphysics applications

Chapter11
Model Multiphysics Problems

11.1 Integrating Multiphysics

Consider a system whose evolution depends on several different physical processes,
represented by the operators A, D, R (advection, diffusion, and reactions, respec-
tively).

ϕt = −A(ϕ) + D(ϕ) + R(ϕ) (11.1)

One way to solve this system is to discretize each of the operators in space. For
instance the discrete advection operator, [A(ϕ)]i might use the ideas on piecewise
linear reconstruction techniques discussed in chapter 4, [D(ϕ)]i can use the discrete
form of the Laplacian from chapter 10, and [R(ϕ)]i may be an algebraic relation. This
leaves us with an ordinary differential equation for the time-evolution of ϕ,

dϕi

dt
= −[A(ϕ)]i + [D(ϕ)]i + [R(ϕ)]i (11.2)

which can be solve using standard ODE techniques. This is the method of lines tech-
nique we saw with advection (§ 5.3) and compressible hydrodynamics (§ 8.10), and
can be a powerful technique to solve PDEs or systems of PDEs with multiple physics
operators

A difficulty arises if these processes each have different timescales associated with
them. For instance, reactions may be vigorous and require a small timestep to ac-
curately capture the changes, but the advection is slow. Or, recall that the timestep
limiter for explicit diffusion scales as ∆x2 while explicit advection scales as ∆x, so
these processes could demand very different timescale for evolution. Therefore, we
don’t want to use the same timestep for all the processes, since that will needlessly
make things computationally expensive. Operator splitting solves for the effects of
each operator separately, using whichever timestep (and time-discretization, e.g., ex-
plicit or implicit) is most suited to the operation. The result of one operation is used

git version: ae2370a3e0d5 . . . 203

204 Chapter 11. Model Multiphysics Problems

as the input to the next*. The downside of this approach is that the operations may
not be well coupled.

11.2 Ex: diffusion-reaction

Consider a diffusion-reaction equation:

ϕt = κϕxx +
1
τ

R(ϕ) (11.3)

This can be thought of as a simple model for a combustion flame, and can propagate
a front. It is often the case that the reactions are stiff, and require a smaller timestep
then the diffusion part. In fact, we may want to use an implicit integration method
designed for stiff ODEs for the reaction part, but use a standard explicit method for
the diffusion part. This requires operator splitting.

We can use Strang splitting [77] to make the integration second-order accurate over-
all:

ϕn+1 = R∆t/2D∆tR∆t/2ϕn (11.4)

where R∆t/2 represents reacting for a step of ∆t/2 and D∆t represents diffusing for a
step of ∆t. In each case, these operators act as if the other were not present, but they
see the effect of the previous operation on the input ϕ. Note that no explicit source
terms describing one process appear in the other process’s update. The procedure
for updating appears as:

1. Evolve reaction ODE system for ∆t/2

Define ϕ⋆ as the the solution to the ODE:

dϕ

dt
=

1
τ

R(ϕ), ϕ(tn) = ϕn, t ∈ [tn, tn+1/2] (11.5)

2. Solve the diffusion equation for ∆t with an implicit Crank-Nicolson discretization

ϕ⋆⋆ − ϕ⋆

∆t
=

1
2
(D(ϕ⋆) + D(ϕ⋆⋆)) (11.6)

Note that the starting point is ϕ⋆.

3. Evolve reaction ODE system for ∆t/2

Define ϕn+1 as the the solution to the ODE:

define ϕn+1 :
dϕ

dt
=

1
τ

R(ϕ), ϕ(tn+1/2) = ϕ⋆⋆, t ∈ [tn+1/2, tn+1] (11.7)

*This directly parallels the dimensional splitting approach we saw for advection in § 5.4.1

11.2—Ex: diffusion-reaction 205

0 20 40 60 80 100
x

0.0

0.2

0.4

0.6

0.8

1.0
φ

Figure 11.1: Solution to the diffusion-reaction equation with 256 zones, and κ = 0.1,
τ = 1.0. The lines shown are spaced 8.0 time-units apart. We see the initial smoothed
tophat profile giving rise to a traveling front.
Ï hydro_examples: diffusion-reaction.py

Consider a simple reaction source

R(ϕ) =
1
4

ϕ(1− ϕ) (11.8)

This is called a KPP reaction source. Here ϕ can be thought of as a progress variable
that varies between pure ash (ϕ = 0) and pure fuel (ϕ = 1). Figure 11.1 shows the
solution to our diffusion-reaction equation with 256 zones, κ = 0.1, τ = 1.0 at several
times.

The solution in this case is a wave with speed S =
√

κ/τ and thickness δ =
√

κτ (see
[84] for some details of this system).

Exercise 11.1

Solve the the difusion reaction equation with the source given in Eq. ??.
Note that you should begin with some smooth initial conditions—if they
are too sharp than the C-N discretization will cause jagged features to
appear. Compare your results to Figure 11.1.

https://github.com/zingale/hydro_examples/blob/master/multiphysics/diffusion-reaction.py

206 Chapter 11. Model Multiphysics Problems

11.3 Ex: advection-diffusion

The viscous Burgers’ equation appears as:

ut + uux = ϵuxx (11.9)

This admits shocks and rarefactions just like the inviscid form we studied in Chap-
ter 6, but now the viscosity can act to smooth out the shock—instead of being in-
finitely thin, it will have a physical width.

As we saw earlier, there are efficient, accurate methods for handling the advective
parts explicitly, but for diffusion, we often want to solve it implicitly. We can split the
solution up, but couple the two processes together to make a method that is overall
second-order accurate in time. We write our equation as:

ut + A(u) = D(u) (11.10)

with A(u) = [1
2 u2]x and D(u) = ϵuxx. Then our update appears in two steps.

1. Find the advective update over the timestep: We use an approximation of the diffu-
sion term at time-level n, D(un) as a source in the construction of the interface
states for the advective part. Once the interface states, un+1/2

i+1/2
are known, we

construct the advective update term as:

An+1/2

i =

[
1
2

(
un+1/2

i+1/2

)2
]
−
[

1
2

(
un+1/2

i−1/2

)2
]

∆x
(11.11)

2. Solve the diffusion equation with the advective source: We use a Crank-Nicolson
discretization of the diffusion part of our equation, with the advective update
term appearing as a source.

un+1 − un

∆t
=

1
2

D(un) +
1
2

D(un+1)− An+1/2 (11.12)

This is a linear system that can be solved as a tridiagonal matrix or with multi-
grid. The result of this step is that un+1 is updated with both the advection and
diffusion terms.

Because the diffusion is done implicitly, the timestep constraint (for stability) for this
solve is due to the advective portion only.

For step 1, the addition of the explicit diffusion source requires a small change to the
method we used to predict the interface states.

11.3—Ex: advection-diffusion 207

0.0 0.2 0.4 0.6 0.8 1.0
0.4

0.6

0.8

1.0

1.2

1.4

1.6

ε=0.005000

ε=0.000500

ε=0.000050

Figure 11.2: Solution to the viscous Burgers’ equation with a variety of different vis-
cosities. The initial conditions was a single wavelength of a sine wave for x ∈ [1/3, 2/3],
and u = 1 otherwise.
Ï hydro_examples: burgersvisc.py

un+1
i+1/2,L = un

i +
∆x
2

∂u
∂x

+
∆t
2

∂u
∂t

+ . . . (11.13)

= un
i +

∆x
2

∂u
∂x

+
∆t
2

(
−ui

∂u
∂x

+ D(un
i)

)
+ . . . (11.14)

= un
i +

∆x
2

(
1− ∆t

∆x
ui

)
∂u
∂x

+
∆t
2

D(un) + . . . (11.15)

here the source term (shown in red) incorporates the effects of the diffusion on the
prediction of the states for advection. This entered into our states when we replaced
∂u/∂t with our PDE equation. The spatial derivative, ∂u/∂x is replaced by a mono-
tonized difference, and the method then proceeds as with the regular Burgers’ equa-
tion. The Riemann problem is unchanged from the inviscid case.

Figure 11.2 shows the solution of the viscous Burgers’ equation for shock initial con-
ditions with different amounts of viscosity. Notice that the effect of the viscosity is
to smooth the shock profile, but the shock position itself agrees between the cases.

https://github.com/zingale/hydro_examples/blob/master/multiphysics/burgersvisc.py

208 Chapter 11. Model Multiphysics Problems

102 103

N

10 5

10 4

10 3

10 2

L2
 n

or
m

 o
f a

bs
ol

ut
e

er
ro

r
(x2)

Burgers' solution

Figure 11.3: Convergence of the Burgers’ solution with ϵ = 0.005. To test convergence
a run with 4096 zones was done as a benchmark solution. We see second-order con-
vergence for the higher-resolution runs in this sample.
Ï hydro_examples: burgersvisc_converge.py

11.3.1 Convergence without an analytic solution

Assessing the convergence of this is more difficult than the tests we looked at before,
since there is no analytic solution to compare to. In this case, we can compare a very
high-resolution solution and take this to be the right answer / benchmark solution,
and then compare coarser simulations to a coarsened version of the benchmark so-
lution. This is done in Figure 11.3. The fine zones of the benchmark are averaged
into a corresponding coarse grid zone to produce a coarsened representation of the
benchmark, and the norm of the error with the coarse simulation is computed.

https://github.com/zingale/hydro_examples/blob/master/multiphysics/burgersvisc_converge.py

Chapter12
Reactive Flow

12.1 Introduction

Many astrophysical problems involve modeling nuclear (or chemical) reactions cou-
pled with hydrodynamics. Astrophysical reacting flows share a lot of similarities
with terrestrial combustion, including both subsonic (deflagrations) and supersonic
(detonations) burning fronts. Nice discussions of the physics of reacting flows can be
found in, e.g., [59, 62]

For multifluid flows, the Euler equations are augmented with continuity equations
for each of the nuclear (or chemical) species. If we denote the density of species k as
ρk, then conservation of mass for each species individually implies:

∂ρk

∂t
+∇ · (ρkU) = 0 (12.1)

Summing Eq. 12.1 over k gives us back the mass contunity equation, since ∑k ρk = ρ.
The ρk are sometimes called partial densities. Note that using both Eq. 12.1 and the
normal mass continuity equation for ρ overspecifies the system.

It is often easier to define a mass fraction of species k, Xk, as

Xk =
ρk

ρ
(12.2)

and it is easy to see that ∑k Xk = 1, and

∂(ρXk)

∂t
+∇ · (ρXkU) = 0 (12.3)

git version: ae2370a3e0d5 . . . 209

210 Chapter 12. Reactive Flow

Exercise 12.1

Using the continuity equation, show that we can write Eq. 12.3 as an
advection equation:

∂Xk

∂t
+ U · ∇Xk = 0 (12.4)

or
DXk

Dt
= 0 (12.5)

This latter form says that as a fluid element advects with the flow, its composition
does not change. However, reactions can turn one species into another, so for reacting
flow, DXk/Dt ̸= 0. If we define the creation rate for species k as ω̇k, then we have:

DXk

Dt
= ω̇k (12.6)

Since ∑k Xk = 1, it must be that ∑k ω̇k = 0.

Reactions will also release (or consume) energy, due to the change in nuclear or
chemical binding energy. This energy will be a source to the internal energy. In
particular, our first law of thermodynamics now has a source:

Tds = de + pd
(

1
ρ

)
= qreact (12.7)

where qreact is the specific energy release due to reactions (energy / mass). Following
a fluid element, this takes the form:

T
Ds
Dt

=
De
Dt

+ p
D(1/ρ)

Dt
= Hnuc (12.8)

Where now Hnuc is the time-rate of energy release per unit mass (dqreact/dt).

An additional energy source that we often consider along with reactions is thermal
diffusion. Fick’s law says that the heat flux is proportional to ∇T, so we write:

Fcond = −kth∇T (12.9)

as the conductive heat flux. Here the ‘−’ indicates that heat flows from hot to cold
and kth is the thermal conductivity. See § 10.1 for more discussion.

The conservative Euler equations with reactive and diffusive source terms appear as:

∂ρ

∂t
+∇ · (ρU) = 0 (12.10)

∂ρXk

∂t
+∇ · (ρUXk) = ρω̇k (12.11)

∂(ρU)

∂t
+∇ · (ρUU) +∇p = 0 (12.12)

∂(ρE)
∂t

+∇ · (ρEU + pU) = ∇ · (kth∇T) + ρHnuc (12.13)

12.1—Introduction 211

We’ll write the heat sources simply as H,

H = Hnuc +
1
ρ
∇ · kth∇T (12.14)

In primitive form, the derivation of the pressure equation is a complex. Previously,
we found the pressure evolution in the absence of sources by differentiating pressure
along streamlines (Eq. 7.21):

Dp
Dt

=
∂p
∂ρ

∣∣∣∣
s

Dρ

Dt
+

∂p
∂s

∣∣∣∣
ρ

Ds
Dt

(12.15)

where, as before, we recognize that Γ1 ≡ ∂ log p/∂ log ρ|s. Now, however, we have an
entropy source, so Ds/Dt ̸= 0. The Maxwell relations* tell us that

∂p/∂s|ρ = ρ2∂T/∂ρ|s (12.16)

This gives us the form:
Dp
Dt

=
p
ρ

Γ1
Dρ

Dt
+ ρ2 ∂T

∂ρ

∣∣∣∣
s

H
T

(12.17)

We need an expression for ∂T/∂ρ|s in terms of derivatives of ρ and T (since that is
what our equations of state typically provide). Consider Γ1, with p = p(ρ, T):

Γ1 =
ρ

p
dp
dρ

∣∣∣∣
s
=

ρ

p

[
pρ + pT

dT
dρ

∣∣∣∣
s

]
(12.18)

where we use the shorthand pρ ≡ ∂p/∂ρ|T and pT ≡ ∂p/∂T|ρ. This tells us that

∂T
∂ρ

∣∣∣∣
s
=

p
ρpT

(Γ1 − χρ) (12.19)

where χρ ≡ ∂ log p/∂ log ρ|T. To further simplify this, we use some standard relations
for general equations of state

Γ1

χρ
=

cp

cv
(12.20)

and

cp − cv =
p

ρT
χ2

T
χρ

(12.21)

with χT ≡ ∂ log p/∂ log T|ρ (see, e.g., [40] for both of these relations). These allow us
to write

∂T
∂ρ

∣∣∣∣
s
=

pχT

ρ2cv
(12.22)

*see, for instance, [73], for some discussion on these relations

212 Chapter 12. Reactive Flow

Putting this all together, we have:

Dp
Dt

=
p
ρ

Γ1
Dρ

Dt
+

pχT

cvT
H (12.23)

and using the continuity equation, Dρ/Dt = −ρ∇ ·U, we finally have:

∂p
∂t

+ U · ∇p + Γ1 p∇ ·U = Γ1 pσH (12.24)

where we defined

σ =
∂p/∂T|ρ

ρcp∂p/∂ρ|T
(12.25)

The σ notation follows from [6].

The primitive variable is then

∂ρ

∂t
+ U · ∇ρ + ρ∇ ·U = 0 (12.26)

∂U
∂t

+ U · ∇U +
1
ρ
∇p = 0 (12.27)

∂p
∂t

+ U · ∇p + Γ1 p∇ ·U = Γ1 pσH (12.28)

∂Xk

∂t
+ U · ∇Xk = ω̇k (12.29)

Finally, we can derive a temperature evolution equation following the method from
§ 7.3. We find

cv
DT
Dt

=

(
∂e
∂ρ

∣∣∣∣
T
− p

ρ

)
∇ ·U + H (12.30)

or

cp
DT
Dt

=

(
1
ρ
− ∂h

∂p

∣∣∣∣
T

)
Dp
Dt

+ H (12.31)

depending on whether we start with e or h.

12.2 Operator splitting approach

Using operator splitting, we separate the equations into hydrodynamics and reactive
parts and we do these operations in turn. Following the ideas from § 11.2, we perform
the update in stages. If we denote the reaction update operator as R∆t and the
hydrodynamics operator as A∆t, then our update appears as:

U n+1 = R∆t/2 A∆tR∆t/2 U n (12.32)

To make it more explicit, we write out system as:

∂U
∂t

+∇ · F(U) = R(U) (12.33)

12.2—Operator splitting approach 213

where R = (0, ω̇k, 0, ρHnuc)⊺ is the vector of reactive sources. The advance through
∆t in time is:

1. Evolve reaction part for ∆t/2.

We define U ⋆
i as the result of integrating

dU i

dt
= R(U i) (12.34)

over t ∈ [tn, tn+1/2] with initial conditions, U i(tn) = U n
i .

2. Solve the hydrodynamics portion for ∆t, beginning with the state U ⋆

U ⋆⋆
i − U ⋆

i
∆t

=
F(x)(U ⋆,n+1/2

i−1/2
)− F(x)(U ⋆,n+1/2

i+1/2
)

∆x
(12.35)

where U ⋆,n+1/2

i−1/2
is the predict interface state (using the ideas from § 8.2), begin-

ning with the state U ⋆. Note that R does not appear here explicitly.

Alternately, we could use the MOL hydrodynamics update here, but the basic
idea will be the same—the hydrodynamics does not explicitly see the reaction
terms.

3. Evolve reaction part for ∆t/2

We reach the final update, U n+1, by integrating

dU
dt

= R(U) (12.36)

over t ∈ [t1/2, tn+1] with initial conditions U (tn+1/2) = U ⋆⋆.

12.2.1 Adding species to hydrodynamics

In the hydrodynamics algorithm, we neglect the diffusion and reaction terms. Their
effects are incorporated implicitly by performing the hydrodynamics update starting
with the state that has already experienced burning.

∂ρ

∂t
+∇ · (ρU) = 0 (12.37)

∂(ρXk)

∂t
+∇ · (ρUXk) = 0 (12.38)

∂(ρU)

∂t
+∇ · (ρUU) +∇p = 0 (12.39)

∂(ρE)
∂t

+∇ · (ρEU + pU) = 0 (12.40)

214 Chapter 12. Reactive Flow

When we now consider our primitive variables: q = (ρ, u, p, Xk), we find

A(q) =

u ρ 0 0
0 u 1/ρ 0
0 Γ1 p u 0
0 0 0 u

 (12.41)

There are now 4 eigenvalues, with the new one also being simply u. This says that
the species simply advect with the flow. The right eigenvectors are now:

r(−) =

1
−c/ρ

c2

0

 r(◦) =

1
0
0
0

 r(◦,X) =

0
0
0
1

 r(+) =

1
c/ρ

c2

0

(12.42)
corresponding to λ(−) = u− c, λ(◦) = u, λ(◦,X) = u, and λ(+) = u + c. We see that for
the species, the only non-zero element is for one of the u eigenvectors (r(◦,X)). This
means that Xk only jumps over this middle wave. In the Riemann solver then, there
is no ‘star’ state for the species, it just jumps across the contact wave.

To add species into the solver, you simply need to reconstruct Xk as described in
Chapter 8 to find the interface values. If we are doing characteristic tracing, then we
use this new A(q) and associated eigenvectors. We then solve the Riemann problem,
with Xk on the interface taken as simply the left or right state depending on the sign
of the contact wave speed, and do the conservative update for ρXk using the species
flux.

One issue that can arise with species is that even if ∑k Xk = 1 initially, after the
update, that may no longer be true. There are a variety of ways to handle this:

• You can update the species, (ρXk) to the new time and then define the density
to be ρ = ∑k(ρXk)—this means that you are not relying on the value of the
density from the mass continuity equation itself.

• You can force the interface states of Xk to sum to 1. Because the limiting is
non-linear, this is where problems can arise. If the interface values of Xk are
forced to sum to 1 (by renormalizing), then the updated cell-centered value of
Xk will as well. This is the approach discussed in [63].

• You can design the limiting procedure to preserve the summation property.
This approach is sometimes taken in the combustion field. For piecewise linear
reconstruction, this can be obtained by computing the limited slopes of all the
species, and taking the most restrictive slope and applying this same slope to
all the species.

12.3—Burning modes 215

12.2.2 Integrating the reaction network

The reactive portion of our operator split system is:

dXk

dt
= ω̇k (12.43)

d(ρe)
dt

= ρHnuc (12.44)

As written, this system is not closed without the equation of state, since ω̇k =

ω̇k(ρ, T, Xk), and likewise for Hnuc. Our temperature evolution equation reduces
to

cx
dT
dt

= Hnuc (12.45)

where cx is cv or cp, depending on the physical effects we are trying to capture. This
difference only arises because we are neglecting the hydrodynamic portions of the
temperature evolution during the reaction step.

Many simulation codes neglect the evolution of temperature during the reaction step
(see, e.g., [34]).

An excellent introduction to integrating astrophysical nuclear reaction networks is
found in [79]. The main issue with reaction networks is that they tend to be stiff,
which means that implicit integration techniques are needed. There are a number of
well-tested, freely available implicit ODE integrators (e.g. [18]).

For stiff systems, you need to supply both a righthand side routine and a Jacobian
routine†.

12.2.3 Incorporating explicit diffusion

12.3 Burning modes

12.3.1 Convective burning

12.3.2 Deflagrations

A deflagration or flame is a subsonic burning front that propagates via a balance of
diffusion and reactions. Thermal diffusion raises the temperature of fuel ahead of the
flame to ignition and the energy release heats the ash, keeping the thermal gradient
needed for diffusion. In terrestrial flames, species diffusion can be important as well,
but this is usually negligible in astrophysical flames.

Because the burning front is subsonic, sound waves can communicate across the
flame and therefore the fuel and ash are at the same pressure. The temperature jump

†although this could be calculated via finite-differences if needed

216 Chapter 12. Reactive Flow

across the flame means that the density will drop behind the flame to preserve the
constant pressure. Our temperature evolution equation, taking Dp/Dt = 0, is

ρcp
DT
Dt

= ∇ · kth∇T + ρHnuc (12.46)

We can estimate the timescale for diffusion by neglecting the reactions and writing

DT
Dt

=
1

ρcp
∇ · kth∇T ≈ D∇2T (12.47)

where D = kth/(ρcp) is the diffusion coefficient (assuming ρcp is spatially constant).
Dimensional analysis suggests that the diffusion timescale is then

tdiff ≈
δ2

D (12.48)

where δ is the width of the region where diffusion takes place—we’ll identify this as
the flame thickness.

Similarly, we can estimate the reaction timescale by considering

ρcp
DT
Dt

= ρHnuc (12.49)

and writing

tburn ≈
cpT
Hnuc

(12.50)

We can alternately expand Hnuc in terms of temperature if we wish to capture some
of the temperature sensitivity.

Equating these timescales gives

δ ∼
(

kthT
ρHnuc

)1/2

(12.51)

which is an estimate of the flame thickness. We can define the flame speed as the
time it takes to burn through this thickness:

v f ∼
δ

tburn
∼
(

kthHnuc

ρcpT

)1/2

(12.52)

We note the main dependences are:

v f ∼
√

kthHnuc δ ∼
√

kth

Hnuc
(12.53)

12.3.3 Detonations

Chapter13
Planning a Simulation

13.1 How to setup a simulation?

When you perform a simulation, you are making a series of approximations. The first
comes with the choice of equation set. As discussed earlier, for pure hydrodynamics,
this often means solving the Euler rather than the full Navier-Stokes equations. The
next approximation is made when discretizing the equations, using the methods we
described in the earlier chapters.

Astrophysical flows involve a range of length and timescales. Often it is not possible
to capture all these scales in a single simulation, so some comprimises must be made.
If you are interested in the dynamics on the full scale of the system, L, then you will
resolve down to some cutoff scale l, where L/l ∼ O(103–104). At scales smaller than
l, you neglect the flow features. The smallest scale of importance is the disipation
scale λ≪ L.

If you are not resolving down to the dissipation scales in our problem, then you are
working in the realm of large eddy simulations (LES; see [67]). Proper LES requires
a subgrid model to treat the unresolve scales and their feedback onto your grid. If
you instead rely on numerical diffusion of your method to do the dissipation, you
are doing implicit large eddy simulation or ILES—for many flows, this be sufficient to
capture the dynamics (including turbulence) that are important [8, 49].

13.2 Dimensionality and picking your resolution

Nature is three-dimensional, so realistic simulaitons generally require full 3-d mod-
eling. Nevertheless, 2-d simulations can be useful to scope out the problem space,
and in particular, to get a feel for the timescales and resolution needed to resolve

git version: ae2370a3e0d5 . . . 217

218 Chapter 13. Planning a Simulation

smallscale features. The major place where dimensionality affects results is for insta-
bilities and turbulence. The trend in 2-d is for small scale vortices to merge and build
larger and larger structures (see, e.g., [16]), while in 3-d motions at the largest scale
cascade down to smaller scales, driving turbulent flow down to the smallest scales.

Turbulence can be very important in astrophysical flows, and properly capturing it
requires modeling a large range of lengthscales (physically, the objective is to get a
large Reynolds number: the ratio of the advective force to the dissipative force). Gen-
erally, you’ll just start to get a resolved inertial range over a decade in wavenumber
in your power spectrum at around 512 zones on a side of your domain (using the
methods that we discussed here). With fewer points than this, you are unlikely to
capture turbulence.

If nuclear burning is modeled, the steepness of the reaction rate will set a lengthscale.
Burning can also wash out instabilities, a process sometimes called fire polishing [12,
80]. Here, if the timescale for reactions is faster than the growth rate of an instability,
the instability is suppressed. This can set a small scale cutoff that is well above the
viscous dissipation scale.

Hydrostatic equilibrium also puts demands on the resolution. Recall that the mo-
mentum equation is:

ρ
DU
Dt

+∇p = ρg (13.1)

If hydrostatic equilibrium, ∇p = ρg, is not exactly satisfied, then the residual will
appear as a force that generates an acceleration and non-zero velocities will build up.
A good rule of thumb is that you need 10 points per pressure scale height to get a
reasonable hydrostatic balance (this is discussed at bit in [87]).

Spatial resolution is often in contention with improved physics—both can add to the
computational cost of a simulation, so for fixed cost, you have often have to choose
between more physics (e.g., larger reaction network) or more resolution.

An important part of the simulation process is to ensure that your results are con-
verged. In a convergence study, you run the same simulation at various resolutions
and look to see that the major results (e.g., integral quantities) do not change signif-
icantly with resolution. Ideally you would show that any results you are interested
are moving toward an asymptotic value. Even if you are not converged however, you
could use the trends observed with resolution to help understand the possible error
in your simulation.

13.3 Boundary conditions

Another approximation you make is how to treat the boundaries. Usually one
chooses symmetry / reflecting, outflow / zero-gradient, inflow (specifying the value
on the boundary), or periodic. In the case of symmetry, the fluid state is reflected

13.4—Timestep considerations 219

and the normal velocity is reflected with a sign change. The transverse velocity can
be left as is (a slip wall) or set to zero at the boundary (no-slip wall).

Generally speaking, you should put your boundaries as far away from the place
where the action is occuring as possible. For example, if you are modeling a convec-
tive region bounded by stably stratified flow, then you should have a large buffer of
stable atmosphere bounding it.

Periodic boundary conditions don’t magically fix everything either. With a triply-
periodic box (periodic on all boundaries), then you are confining the flow. If energy
is injected into the box, then there is no place for it to expand, and this can lead to
artifical heating or compression.

Symmetry / reflecting boundaries provide a simple way to reduce a problem size,
for example, modeling only an octant of a star in 3-d instead of the full star. But
they also introduce artifacts, since they force the normal velocity to zero right on the
boundary. This means that flow through the center of a star (e.g., if we model only an
octant) can be restricted, resulting in artifical flow / convective features. Wall heating
can also be an issue—forcing the normal velocity to zero at the symmetry boundary
can lead to stagnation of the flow there, allowing hot spots to develop and not be
transported away.

13.4 Timestep considerations

The timestep constraint we discussed (the CFL condition) is required for stability,
but that is different than accuracy. In particular, accurately capturing some physical
processes (that may appear as source terms) might require more restrictive timesteps
to ensure that they are properly coupled with the hydrodynamics.

An example where this can commonly arise is reactive flows—combining hydrody-
namics with nuclear or chemical reactions. If the reactions are very vigorous, then
you may run into a situation where you exaust your fuel in a zone in a single step,
without giving the hydrodynamics a chance to advect new fuel in. This represents a
breakdown of the coupling of the hydrodynamics and reactions. A common way to
improve the accuracy here is to monitor the change in mass fractions of a fuel and
set a timestep limit such that:

∆treact = Creact
Xfuel

|ω̇fuel|
(13.2)

where Creact < 1. The species creation rate, Ẋreact, is typically evaluated using the
value from the previous step.

220 Chapter 13. Planning a Simulation

13.5 Convergence and multiphysics

For a full simulation, with hydrodynamics coupled to other physics, you should
test your code to ensure that it is converging at the rate that you expect. Usually
in this case there is no analytic solution, so you need to measure the convergence
numerically. A standard way to do this is to run pairs of simulations that differ by
a factor of two in resolution, we’ll denote the coarser simulation with the subscript
c and the finer simulation with the subscript f . The error is computed for a field ϕ

by coarsening the finer simulation by a factor of two, and computing the norm of the
difference:

ϵ ≡ ∥ϕc − C(ϕ f)∥ (13.3)

Here, we denote the coarsening operator as C(.). In this case, two simulations give us
a single error. We then repeat this, taking the fine simulation from this comparison
as the coarse for the next, and using an even finer simulation to generate a new error.
We can then measure the convergence of a multiphysics simulation by comparing the
errors from the two pairs of the simulations. This procedure was used in, e.g., [4, 52].

Ideally, a smooth problem should be used, since discontinuities by definition do not
converge with resolution (and limiters, if used, would kick in there as well).

13.6 Computational cost

The main limitation to your choice of resolution and timestep is computational cost.
For a three-dimensional simulation in a box with N zones on a side, the work scales
as O(N4). The cost to advance a single timestep is based on the volume, N3, and
the number of timesteps to get you to a fixed simulation time, tmax, is tmax/∆t, but
∆t ∼ ∆x/s ∼ L/(Ns), where s is the fastest information speed. So the number of
timesteps increases with N, making the total cost N4. Think about this for a minute—
if you double the number of zones, then the amount of work you need to do increases
by 16×.

A common conflict that arises is: Do you do one “hero” calculation or many smaller
calculations to understand the sensitivity of your results to input parameters? Com-
puting centers that grant allocations usually setup their queues to favor big jobs that
use as much of the machine as possible (as that’s what their funders use as a metric
for their success).

It is important to understand that no single algorithm will offer everything you need.

13.7 I/O

Another challenge with simulations is data storage. For a calculation on a 10243

grid, using double precision, each number you store takes 8 bytes / zone, so a single

13.7—I/O 221

variable on the grid will require 8 GB. For compressible hydro, you will have atleast
5 variables (in 3-d), ρ, (ρU), and (ρE), so this is a minimum of 40 GB per file. Often
you will want some derived quantities (like temperature) and composition quantities
in your output, which will greatly increase your storage requirements.

For this reason, simulation codes often have different types of output. Checkpoint
files store all the variables that are needed to restart the calculation from where you
left off—these should be stored in a (portable) binary format at machine precision.
You don’t need to keep these around forever, perhaps only saving the last few as
necessary to restart your calculation as it works through a computing center’s queue.
Plotfiles store a lot of variables—basically anything that will be needed for the anal-
ysis of the simulation. Since you don’t need these to restart, you can probably afford
to store the variables at single precision. Sometimes you might have multiple levels
of plotfiles, storing a few variables (like density) very frequently to allow for the pro-
duction of smooth movies, and storing a lot of variables and derived quantities at a
much longer cadence.

A perpetual challenge with the analysis and visualization of simulations is that some-
times you don’t know what you are looking for until the simulation is complete, so
you cannot simply do runtime visualization and not save the raw data as the simu-
lation progresses. This leads to collections of plotfiles that can easily top 100 TB per
simulation. Runtime diagnostics can help a little—if you know any global quantities
that you will be interested in over the course of the simulation (like peak temper-
ature, or total energy) you can compute these on the fly and simply store a single
number per step (or every N steps) into a file.

Part V

Low Speed Hydrodynamics

Chapter14
Incompressible Flow and
Projection Methods

14.1 Incompressible flow

As a fluid parcel advects through a domain, it compresses and expands due to a
variety of effects (stratification, local heat release, acoustic/shock waves). The La-
grangian derivative of the density captures the changes in the fluid, and is a measure
of its compressibility. From the continuity equation, we see:

−1
ρ

Dρ

Dt
= ∇ ·U (14.1)

Note that for ∇ · U > 0, we have −(1/ρ)(Dρ/Dt) > 0, which means that ρ gets
smaller—this is expansion of the Lagrangian fluid element.

A fluid in which the density (and therefore volume) of a fluid element is not al-
lowed to change is called incompressible. An incompressible fluid obeys the velocity
constraint:

∇ ·U = 0 (14.2)

(since Dρ/Dt = 0). The incompressible fluid approximation is a reasonable approxi-
mation when the Mach number of the fluid is small (≪ 1). To complete the system,
we add the momentum equation. If we take the density to be constant everywhere
in the domain (not just in our fluid element), then we have:

∂U
∂t

+ U · ∇U +∇p = 0 (14.3)

Note that p here looks like a pressure, but it is not subject to any equation of state.
This system is closed as written. The value of p is determined such that the velocity
constraint is satisfied.

git version: ae2370a3e0d5 . . . 225

226 Chapter 14. Incompressible Flow and Projection Methods

We can gain more insight into the applicability of the incompressible equations by
doing an asymptotic expansion. Starting with the momentum equation from the
Euler equations:

∂(ρU)

∂t
+∇ · (ρUU) +∇p = 0 (14.4)

we can introduce dimensionless variables:

Ū =
U
|U0|

; t̄ =
t
t0

; ρ̄ =
ρ

ρ0
; x̄ =

x
L0

; p̄ =
p

ρ0c2
0

(14.5)

and we find the dimensionless evolution equation:

∂(ρ̄Ū)

∂t̄
+ ∇̄ · (ρ̄ŪŪ) +

1
M2 ∇̄ p̄ = 0 (14.6)

Now we introduce an expansion of pressure in terms of Mach number:

p = p0 + p1M + p2M2 (14.7)

Grouping terms by power of Mach number, we find:

∇p0 = ∇p1 = 0 (14.8)

and
∂(ρU)

∂t
+∇ · (ρUU) +∇p2 = 0 (14.9)

Only p2, which is sometimes called the dynamical pressure appears in the dynamics.
All of the thermodynamic content is in p0, consistent with our argument previously
that no equation of state is needed.

Recalling that pressure evolves according to

∂p
∂t

+ γp∇ ·U + U · ∇p = 0 (14.10)

The general expression for the velocity divergence is:

∇ ·U = − 1
γp

Dp
Dt

(14.11)

from our pressure expansion, we see that

∇ ·U ∼ O(M2) (14.12)

This justifies our argument that the incompressible equations apply at low Mach
number.

14.2—Projection methods 227

14.2 Projection methods

The basic idea behind a projection method is that any vector field can be decomposed
into a divergence free part and the gradient of a scalar (this is sometimes called a
Hodge decomposition). Given a velocity field U⋆, we can express it in terms of the
divergence free part Ud and a scalar, ϕ as:

U⋆ = Ud +∇ϕ (14.13)

Taking the divergence of each side, and noting that ∇ ·Ud = 0, we have

∇ ·U⋆ = ∇2ϕ (14.14)

This is an elliptic equation. Given suitable boundary conditions, we can solve for ϕ

(for instance, using multigrid) and recover the divergence free part of U⋆ as:

Ud = U⋆ −∇ϕ (14.15)

We call this operation of extracting the divergence free part of a velocity field a
projection. This can be expressed by defining an operator P, such that PU⋆ = Ud, and
(I − P)U⋆ = ∇ϕ. From the momentum equation, we see that ∂U/∂t +∇p is in the
form of a divergence free term + the gradient of a scalar. This means that advancing
the velocity field subject to the constraint involves solving:

Ut = P(Ut +∇p) = P(−U · ∇U) (14.16)

See Bell, Colella, and Howell [10] for a nice discussion of this.

The original projection method for incompressible flows goes back to Chorin [21].
Instead of evolving Eq. 14.16 directly, we break the update into pieces. The basic idea
is to evolve the velocity advection equation without regard to the constraint, yield-
ing a provisional velocity field which is then subjected to a projection to enforce the
divergence-free constraint. Bell, Colella, and Glaz (BCG) [9] introduced a projection
method that uses standard Godunov methods for the advection terms (much like
is done with compressible flow) and then solves an elliptic equation to enforce the
constraint. This division of the operations in the algorithm (advect then project) is a
type of fractional step method.

There are different ways to discretize the operators that make up the projection. We
denote the discretized divergence as D and the discretized gradient operation as G.
For an exact projection, the discretized Laplacian, L, would be the same as applying
G and D in succession (i.e. L = DG). Depending on our data centerings, we may
prefer to discretize the Laplacian independently to D and G, such that L ̸= DG. This
is called an approximate projection. Note that for an approximate projection, P is not
idempotent: P2U ̸= PU.

Many variations on this basic idea exist, using alternate forms of the projection,
different grid centerings of the ϕ variable, and additional physics.

228 Chapter 14. Incompressible Flow and Projection Methods

Figure 14.1 shows an example of a projection. The initial velocity field is specified as:

u = − sin(πx)2 sin(2πy) (14.17)

v = sin(πy)2 sin(2πx) (14.18)

which is divergence free and doubly-periodic. This is then modified by adding the
gradient of a scalar, ϕ, of the form:

ϕ =
1
10

cos(2πy) cos(2πx) (14.19)

yielding a new velocity, Up = U +∇ϕ. The result is the middle panel in the figure,
and is not divergence free. A projection is then done, to recover ϕ by solving

∇2ϕ = ∇ ·Up (14.20)

For this figure, we use the standard 5-point Laplacian and a divergence built via
centered-differences:

∇ ·U =
ui+1,j − ui−1,j

2∆x
+

vi,j+1 − vi,j−1

2∆y
(14.21)

Together, these represent an approximation projection.

Exercise 14.1

Implement an approximate projection, using pure smoothing for solving
the elliptic equation. Start with the velocity field described by Eqs. 14.17
and 14.18 and the scalar from Eq. 14.19. Compute a poluted velocity field,
Up = U +∇ϕ and then project it to recover the original velocity field.

14.3 Cell-centered approximate projection solver

Here we describe an incompressible algorithm that uses cell-centered data throughout—
U and p are both cell-centered. The projection at the end is an approximate projec-
tion. The basic algorithm flow is

• Create the time-centered advective velocities through the faces of the zones.

• Project the advective velocities such that they obey the velocity constraint

• Construct the time-centered interface states of all quantities on the faces of the
zones using the advective velocity.

• Update the velocity to the new time. This is defines the provisional velocity
field—it does not yet satisfy the constraint.

14.3—Cell-centered approximate projection solver 229

0

20

40

60

80

100

120
original u original v

0

20

40

60

80

100

120
'polluted' u 'polluted' v

0 20 40 60 80 100 120
0

20

40

60

80

100

120
projected u

0 20 40 60 80 100 120

projected v

0.8

0.4

0.0

0.4

0.8

0.8

0.4

0.0

0.4

0.8

0.8

0.4

0.0

0.4

0.8

0.8

0.4

0.0

0.4

0.8

0.8

0.4

0.0

0.4

0.8

0.8

0.4

0.0

0.4

0.8

Figure 14.1: An example of an approximate projection, on a 1282 grid. The top shows
the original velocity field, Eqs. 14.17 and 14.18. This was poluted by adding the gradi-
ent of a scalar, Eq. 14.19 (middle) and then a projection was done to recover the original
velocity field (bottom). In this case, the L2 norm of the error on the velocity (comparing
before and after projection) is 0.000189.Ï hydro_examples: project.py

• Enforce the velocity constraint by projecting the velocity.

The description below is pieced together from a variety of sources. BCH describes a
cell-centered method, but with an exact projection (with a larger, decoupled stencil).
Almgren, Bell, and Szymczak (ABS) [7] describes an approximate projection method,
but with a node-centered final projection. We follow this paper closely up until the
projection. Martin and Colella [50] (and Martin’s PhD thesis) method uses a cell-

https://github.com/zingale/hydro_examples/blob/master/incompressible/project.py

230 Chapter 14. Incompressible Flow and Projection Methods

centered projection, as is described here. They go into additional effort to describe
this for a refined grid. All of these method are largely alike, aside from how the
discretization of the final projection is handled.

14.3.1 Advective velocity

In predicting the interface states, we first seek to construct the velocities through the
interfaces. A key concept throughout the advection step is that once we have the
normal velocities on the interfaces, we can use these to upwind left and right states
of any quantity to get their interface value. The advective velocities we construct
here, uadv and vadv, will later be used to upwind the various states we predict to the
interfaces. We only need the velocity through the interfaces, as shown in the figure
14.2. This staggered grid arrangement is sometimes called a MAC grid.

ui,j
vi,j

ui+1,j
vi+1,j

ui−1,j
vi−1,j

ui,j+1
vi,j+1

ui,j−1
vi,j−1

u
a
d
v

i
+
1
/
2
,j

u
a
d
v

i−
1
/
2
,j

vadvi,j+1/2

vadvi,j−1/2

i−1 i i+1

j−1

j

j+1

Figure 14.2: The staggered ‘MAC’ grid for the advective velocities.

We follow ABS. Our velocity evolution system (writing out the individual compo-

14.3—Cell-centered approximate projection solver 231

nents of U: u and v) is

∂u
∂t

= −u
∂u
∂x
− v

∂u
∂y
− ∂p

∂x
= 0 (14.22)

∂v
∂t

= −u
∂v
∂x
− v

∂v
∂y
− ∂p

∂y
= 0 (14.23)

Our goal in this step is to predict time-centered interface values of the normal velocity
(u on x-edges and v on y-edges). The prediction follows from Taylor expanding the
state to the interface (through ∆x/2 or ∆y/2) and to the half-time (through ∆t/2). As
with the regular advection, we can have left and right states which we will resolve
by solving a Riemann problem. The left interface state of u at i + 1/2, j is found as:

un+1/2

i+1/2,j,L = ui,j +
∆x
2

∂u
∂x

∣∣∣∣
i,j
+

∆t
2

∂u
∂t

∣∣∣∣
i,j

(14.24)

= ui,j +
∆x
2

∂u
∂x

∣∣∣∣
i,j
+

∆t
2

(
−u

∂u
∂x
− v

∂u
∂y
− ∂p

∂x

)∣∣∣∣
i,j

(14.25)

= ui,j +
∆x
2

(
1− ∆t

∆x
ui,j

)
∂u
∂x

∣∣∣∣
i,j
− ∆t

2

(
v

∂u
∂y

)

i,j
− ∆t

2
∂p
∂x

∣∣∣∣
i,j

(14.26)

(14.27)

We express ∂u/∂x|i,j as ∆u(x)
i,j /∆x, where ∆u(x)

i,j is the limited slope of u in the x-
direction in zone i, j. Our interface state is then:

un+1/2

i+1/2,j,L = ui,j +
1
2

(
1− ∆t

∆x
u
)

∆u(x)
i,j

︸ ︷︷ ︸
≡ûn+1/2

i+1/2,j,L

− ∆t
2

(
v

∂u
∂y

)

i,j︸ ︷︷ ︸
transverse term

−∆t
2

∂p
∂x

∣∣∣∣
i,j

(14.28)

Similarly, for v through the y faces, we find:

vn+1/2

i,j+1/2,L = vi,j +
1
2

(
1− ∆t

∆x
v
)

∆v(y)i,j
︸ ︷︷ ︸

≡v̂n+1/2

i,j+1/2,L

− ∆t
2

(
u

∂v
∂x

)

i,j︸ ︷︷ ︸
transverse term

−∆t
2

∂p
∂y

∣∣∣∣
i,j

(14.29)

As indicated above (and following ABS and the similar notation used by Colella [24]),
we denote the quantities that will be used to evaluate the transverse states (consisting
only of the normal predictor) with a ‘ˆ’. These will be used to evaluate the transverse
terms labeled above.

We predict u and v to both the x and y interfaces, using only the normal part of the
predictor. This gives us the left and right ‘hat’ states on each interface.

232 Chapter 14. Incompressible Flow and Projection Methods

u on x-interfaces:

ûn+1/2

i+1/2,j,L = ui,j +
1
2

(
1− ∆t

∆x
ui,j

)
∆u(x)

i,j (14.30)

ûn+1/2

i+1/2,j,R = ui+1,j −
1
2

(
1 +

∆t
∆x

ui+1,j

)
∆u(x)

i+1,j (14.31)

v on x-interfaces:

v̂n+1/2

i+1/2,j,L = vi,j +
1
2

(
1− ∆t

∆x
ui,j

)
∆v(x)

i,j (14.32)

v̂n+1/2

i,j+1/2,R = vi+1,j −
1
2

(
1 +

∆t
∆x

ui+1,j

)
∆v(x)

i+1,j (14.33)

u on y-interfaces:

ûn+1/2

i,j+1/2,L = ui,j +
1
2

(
1− ∆t

∆y
vi,j

)
∆u(y)

i,j (14.34)

ûn+1/2

i,j+1/2,R = ui,j+1 −
1
2

(
1 +

∆t
∆y

vi,j+1

)
∆u(y)

i,j+1 (14.35)

v on y-interfaces:

v̂n+1/2

i,j+1/2,L = vi,j +
1
2

(
1− ∆t

∆y
vi,j

)
∆v(y)i,j (14.36)

v̂n+1/2

i,j+1/2,R = vi,j+1 −
1
2

(
1 +

∆t
∆y

vi,j+1

)
∆v(y)i,j+1 (14.37)

Note that the ‘right’ state is constructed using the data to the right of the interface.
Also note that in constructing these transverse velocities, we do not include the p
term.

Next we find the advective velocity through each interface. The incompressible veloc-
ity equation looks like the inviscid Burger’s equation, and the Riemann solver follows
that construction. BCG provide the implementation used here (and throughout the
incompressible literature). Also see Toro [82]. We denote the resulting velocities with
the ‘adv’ superscript, as these are the normal velocities used to advect the hat states.
The Riemann problem solution is:

R(qL, qR) =

qL if qL > 0, qL + qR > 0
0 if qL ≤ 0, qR ≥ 0

qR otherwise
(14.38)

We solve this for each of the normal velocities, giving:

ûadv
i+1/2,j = R(ûn+1/2

i+1/2,j,L, ûn+1/2

i+1/2,j,R) (14.39)

v̂adv
i,j+1/2 = R(v̂n+1/2

i,j+1/2,L, v̂n+1/2

i,j+1/2,R) (14.40)

14.3—Cell-centered approximate projection solver 233

These advective velocities (sometimes called the transverse velocities) are used to re-
solve the left and right states of all the hat quantities by simple upwinding. For a u
or v state on the x-interface, we upwind based on ûadv; and for a u or v state on the
y-interface, we upwind based on v̂adv. If we write the upwinding as:

U [sadv](qL, qR) =

qL if sadv > 0
1
2 (qL + qR) if sadv = 0

qR if sadv < 0
(14.41)

Then the interface states are:

ûi+1/2,j = U [ûadv
i+1/2,j](û

n+1/2

i+1/2,j,L, ûn+1/2

i+1/2,j,R) (14.42)

v̂i+1/2,j = U [ûadv
i+1/2,j](v̂

n+1/2

i+1/2,j,L, v̂n+1/2

i+1/2,j,R) (14.43)

ûi,j+1/2 = U [v̂adv
i,j+1/2](û

n+1/2

i,j+1/2,L, ûn+1/2

i,j+1/2,R) (14.44)

v̂i,j+1/2 = U [v̂adv
i,j+1/2](v̂

n+1/2

i,j+1/2,L, v̂n+1/2

i,j+1/2,R) (14.45)

Now we can construct the full left and right predictions for the normal velocities on
each interface (Eqs. 14.28 and 14.29). This involves simply adding the transverse term
to the hat quantities and adding the pressure gradient.

un+1/2

i+1/2,j,L = ûn+1/2

i+1/2,j,L −
∆t
2

[
1
2

(
v̂adv

i,j−1/2 + v̂adv
i,j+1/2

)]

 ûn+1/2

i,j+1/2
− ûn+1/2

i,j−1/2

∆y

− ∆t

2
(Gp)(x),n−1/2

i,j

(14.46)
and

vn+1/2

i,j+1/2,L = v̂n+1/2

i,j+1/2,L −
∆t
2

[
1
2

(
ûadv

i−1/2,j + ûadv
i+1/2,j

)]

 v̂n+1/2

i+1/2,j − v̂n+1/2

i−1/2,j

∆x

− ∆t

2
(Gp)(y),n−

1/2

i,j

(14.47)
Here (Gp)(x),n−1/2

i,j and (Gp)(y),n−
1/2

i,j are difference-approximations to ∇p in the x and
y directions respectively. Note that they are lagged—these come from the projection
at the end of the previous timestep. See BCG for a discussion. A similar construction
is done for the right states at the interface.

Finally, we do a Riemann solve (again, using the Burger’s form of the Riemann prob-
lem) followed by upwinding to get the normal advective velocities. This is basically
the R(., .) operation followed by U (., .). Together, it is:

uadv
i+1/2,j =

un+1/2

i+1/2,j,L if un+1/2

i+1/2,j,L > 0, un+1/2

i+1/2,j,L + un+1/2

i+1/2,j,R > 0
1
2

(
un+1/2

i+1/2,j,L + un+1/2

i+1/2,j,R

)
if un+1/2

i+1/2,j,L ≤ 0, un+1/2

i+1/2,j,R ≥ 0

un+1/2

i+1/2,j,R otherwise
(14.48)

and similar for vadv
i,j+1/2

. These velocities are sometimes referred to as the MAC veloci-
ties.

234 Chapter 14. Incompressible Flow and Projection Methods

ii−1 i+1

j

j−1

j+1

φi,j
φi+1,jφi−1,j

φi,j+1

φi,j−1

u
a
d
v

i
+
1
/
2
,j

u
a
d
v

i−
1
/
2
,j

vadvi,j+1/2

vadvi,j−1/2

ii−1 i+1

j

j−1

j+1

(DGφ)i,j
(DUadv)i,j

(G
φ
)
i
+
1
/
2
,j

(G
φ
)
i−

1
/
2
,j

(Gφ)i,j+1/2

(Gφ)i,j−1/2

Figure 14.3: The centerings of the various components that make up the MAC projec-
tion.

14.3.2 MAC projection

We could simply use these time-centered advective velocities to construct the fluxes
through the interfaces and update to the new time level. However BCH showed that
such a method is unstable for CFL > 0.5. The fix is to enforce the velocity constraint
on these advective velocities. This involves projecting the velocity field onto the space
that is divergence free. This projection is usually called the MAC projection. Once the
MAC-projected advective velocities are computed, we can reconstruct the interface
states using this divergence-free velocity field. Figure 14.3 shows the location of the
various quantities that participate it the MAC projection.

The divergence of the MAC velocities is cell-centered and constructed as:

(DU)i,j =
uadv

i+1/2,j − uadv
i−1/2,j

∆x
+

vadv
i,j+1/2

− vadv
i,j−1/2

∆y
(14.49)

We define a cell-centered ϕ. Gϕ will then be edge-centered on a MAC grid, and
Lϕ = DGϕ is again cell-centered. Since L = DG, this makes the MAC projection an
exact projection.

We solve
Lϕ = DU (14.50)

using multigrid V-cycles and then update the MAC velocities as:

uadv
i+1/2,j = uadv

i+1/2,j −
ϕi+1,j − ϕi,j

∆x
(14.51)

vadv
i,j+1/2 = vadv

i,j+1/2 −
ϕi,j+1 − ϕi,j

∆y
(14.52)

14.3—Cell-centered approximate projection solver 235

14.3.3 Reconstruct interface states

Next we redo the construction of the interface states. This procedure is identical
to that above—construct the interface states ûL,R, v̂L,R on all edges, upwind based
on ûadv, v̂adv, and use these to construct the full states (including transverse terms).
Now however, we construct the interface states of u and v on both the x and y-
interfaces (not just the normal component at each interface). Finally, instead of solv-
ing a Riemann problem to resolve the left and right states, we simply upwind using
the MAC-projected uadv and vadv. This results in the interface state un+1/2

i+1/2,j, vn+1/2

i+1/2,j,

un+1/2

i,j+1/2
, vn+1/2

i,j+1/2
.

The only reason we need to do this step over, instead of using the interface states
that we predicted previously is we want to ensure that they are consistent with the
MAC-projected advective velocities (and therefore, consistent with the constraint).

14.3.4 Provisional update

Once we have the time-centered interface states that are consistent with the MAC-
projected advective velocities, we can update the velocities to the new time by dis-
cretizing the advective terms (U · ∇U). We express the advective terms for u as
A(u),n+1/2

i,j and those for v as A(v),n+1/2

i,j . These have the form:

A(u),n+1/2

i,j =
1
2

(
uadv

i−1/2,j + uadv
i+1/2,j

) un+1/2

i+1/2,j − un+1/2

i−1/2,j

∆x
+

1
2

(
vadv

i,j−1/2 + vadv
i,j+1/2

) un+1/2

i,j+1/2
− un+1/2

i,j−1/2

∆y
(14.53)

A(v),n+1/2

i,j =
1
2

(
uadv

i−1/2,j + uadv
i+1/2,j

) vn+1/2

i+1/2,j − vn+1/2

i−1/2,j

∆x
+

1
2

(
vadv

i,j−1/2 + vadv
i,j+1/2

) vn+1/2

i,j+1/2
− vn+1/2

i,j−1/2

∆y
(14.54)

The normal update for u, v would include the Gp term and appear as:

u⋆
i,j = un

i,j − ∆tA(u),n+1/2

i,j − ∆t(Gp)(x),n−1/2

i,j (14.55)

v⋆i,j = vn
i,j − ∆tA(v),n+1/2

i,j − ∆t(Gp)(y),n−
1/2

i,j (14.56)

Note that at this point, we don’t have an updated p, so we use a lagged value from
the previous step’s projection.

Alternately, we can note that for an exact projection, Gp, is the gradient of a scalar
and would be removed by the projection, so we can omit it in this update, giving an

236 Chapter 14. Incompressible Flow and Projection Methods

alternate provisional update:

u⋆⋆
i,j = un

i,j − ∆tA(u),n+1/2

i,j (14.57)

v⋆⋆i,j = vn
i,j − ∆tA(v),n+1/2

i,j (14.58)

Following the notation in Martin, we distinguish between these with an ‘⋆’ vs. ‘⋆⋆’ *.

14.3.5 Approximate projection

This provisional velocity field does not yet obey the constraint. To enforce the con-
straint, we need to do a projection. Here is where we have the flexibility on whether
to include the Gpn−1/2 term. If we were doing an exact projection, then adding the
gradient of a scalar would not change the divergence-free velocity field, so there
would be no need to add it.

BCH did an exact projection on a cell-centered grid. There, the divergence operator
is:

(DU)i,j =
ui+1,j − ui−1,j

2∆x
+

vi,j+1 − vi,j−1

2∆y
(14.59)

This gives a cell-centered DU. If we want ϕ cell-centered, then the gradient, Gϕ must
also be cell centered so Lϕ = DGϕ is cell-centered. This means that we must have

(Gϕ)
(x)
i,j =

ϕi+1,j − ϕi−1,j

2∆x
(14.60)

(Gϕ)
(y)
i,j =

ϕi,j+1 − ϕi,j−1

2∆y
(14.61)

The resulting Laplacian would then be a 5-point stencil that skips over the immediate
neighbors:

(Lϕ)i,j =
ϕi+2,j − 2ϕi,j + ϕi−2,j

4∆x2 +
ϕi,j+2 − 2ϕi,j + ϕi,j−2

4∆y2 (14.62)

This decomposes the domain into 4 distinct grids that are only linked together at the
boundaries. While an exact projection, this decoupling can be undesirable.

Approximate projections relax the idea that L = DG. In an exact projection, when
you apply the projection operator, P, in succession, the result is unchanged (P2 = P).
This is not the case for an approximate projection. As a result, exactly what form
you project matters. For an approximate projection, we can use the standard 5-point
stencil for the Laplacian,

(Lϕ)i,j =
ϕi+1,j − 2ϕi,j + ϕi−1,j

∆x2 +
ϕi,j+1 − 2ϕi,j + ϕi,j−1

∆y2 (14.63)

*Note that these are identical to ABC [3] approximation projections (1) and (2) (a quick look at ABC
might suggest the opposite, but note that their definition of U⋆ already includes a −Gpn−1/2 term, so by
explicitly adding it back in, you are dealing with the case where U⋆ was updated without any Gpn−1/2

term, like the ‘⋆⋆’ case above.)

14.3—Cell-centered approximate projection solver 237

together with the cell-centered divergence above (Eq. 14.59).

Rider [65] and Almgren, Bell, and Crutchfield (ABC) [3] explore various forms of
what to project when doing the approximate projection. For instance, do we include
the Gpn−1/2 term in the provisional velocity or not? Chorin noted that if viscosity is
being modeled, then it is necessary to include it here to get second-order accuracy.
Also, one can project the update to the velocity, (U⋆ − Un)/∆t instead of just the
new velocity, since Un should already be divergence free. Rider argues that project-
ing the update is not desirable with approximate projections, since any error in Un

being divergence-free is carried forward to the new Un+1. One issue is that a cell-
centered approximate projection cannot remove all sources of divergence (see Rider
and Martin’s PhD thesis).

When projecting the new velocity, we scale by ∆t to get a quantity that has dimen-
sions of pressure. The procedure for the projection differs slightly depending on
whether we project U⋆ or U⋆⋆:

• case I: projecting U⋆/∆t.

From the expression above, this looks like:

U⋆

∆t
=

Un

∆t
− A(u),n+1/2 − (Gp)(x),n−1/2 (14.64)

Ideally, Un is already divergence free, and Gpn−1/2 is the gradient of a scalar,
which will be removed, so the projection should pick out the divergence free
portion of A(u). We solve:

Lϕ = D(U⋆/∆t) (14.65)

using multigrid V-cycles. We then find the new, divergence free velocity field
as:

Un+1 = U⋆ − ∆tGϕ (14.66)

Since we already included Gpn−1/2 in what we projected, Gϕ will be the correc-
tion,

Gϕ = Gpn+1/2 − Gpn−1/2 (14.67)

or
Gpn+1/2 = Gpn−1/2 + Gϕ (14.68)

(see Martin 2.5 or ABC). We store this for the next timestep.

• case II: projecting U⋆⋆/∆t.

From the expression above, this looks like:

U⋆⋆

∆t
=

Un

∆t
− A(u),n+1/2 (14.69)

238 Chapter 14. Incompressible Flow and Projection Methods

There is no explicit Gpn−1/2 term. We solve:

Lϕ = D(U⋆⋆/∆t) (14.70)

using multigrid V-cycles. We then find the new, divergence free velocity field
as:

Un+1 = U⋆⋆ − ∆tGϕ (14.71)

Since there was no Gpn−1/2 in what we projected, pn+1/2 = ϕ, and

Gpn+1/2 = Gϕ (14.72)

We store this for the next timestep.

One pathology of this form of the projection is that (DU)i,j does not actually make
use of the velocity field in zone (i, j). This decoupling from the local zone can result
in a checkerboarding pattern in the projected velocity field.

14.4 Boundary conditions

For the advection portion of the algorithm, the boundary conditions on u and v are
implemented in the usual way, using ghost cells. For the projection,

For a periodic domain, the boundary conditions on ϕ are likewise periodic. At a solid
wall or inflow boundary, we already predicted the velocity that we want at the wall
(in the advection step), and we do not want this value to change in the projection
step. Since the correction is:

Un+1 = U⋆ −∇ϕ (14.73)

we want ∇ϕ · n = 0.

At outflow boundaries, we do not want to introduce any shear as we go through
the boundary. This means that we do not want any tangential acceleration. Setting
ϕ = 0 on the boundary enforces ∇ϕ · t = 0, where t is the unit vector tangential to
the boundary.

See ABS for a discussion of the boundary conditions.

14.5 Bootstrapping

At step 0, we do not have a value of Gp−1/2. To get an initial value for Gp, we run
through the entire evolution algorithm starting with the initial data. At the end of a
step, we reset u and v to the initial values and store the Gp at the end of this step as
Gp−1/2.

It is also common to precede this initialization by first projecting the velocity field to
ensure it is divergence free. This way, we do not have to rely on the initial conditions
to always set a divergence free velocity field.

14.6—Test problems 239

14.6 Test problems

14.6.1 Convergence test

Minion [54] introduced a simple test problem with an analytic solution. The velocity
field is initialized as:

u(x, y) = 1− 2 cos(2πx) sin(2πy) (14.74)

v(x, y) = 1 + 2 sin(2πx) cos(2πy) (14.75)

The exact solution at some time t is:

u(x, y, t) = 1− 2 cos(2π(x− t)) sin(2π(y− t)) (14.76)

v(x, y, t) = 1 + 2 sin(2π(x− t)) cos(2π(y− t)) (14.77)

Minion also gives the pressure, but this is not needed for the solution. This is run on a
doubly-periodic unit square domain. The main utility of this set of initial conditions
is that we can use the analytic solution to measure the convergence behavior of the
algorithm.

14.7 Extensions

• Variable density incompressible: Bell & Marcus [14] describe how to extend these
methods to variable density flows. This means that the density in the domain
may not be constant, but within a fluid element, the density does not change.
This can arise, for instance, in modeling the Rayleigh-Taylor instability.

The basic idea follows the method described above. Now the mass continuity
equation is also evolved:

∂ρ

∂t
+∇ · (ρU) = 0 (14.78)

The density is predicted to the interfaces follow the same procedure above and
upwinded using the MAC velocities. For the projection, the decomposition is
written as:

U = Ud +
1
ρ
∇ϕ (14.79)

and the elliptic equation is now a variable-coefficient equation:

∇ · 1
ρ
∇ϕ = ∇ ·U (14.80)

• Viscosity: When viscosity is included in the system, our momentum equation
becomes:

Ut + U · ∇U +∇p = ϵ∇2U (14.81)

240 Chapter 14. Incompressible Flow and Projection Methods

The solution process for this equation is largely the same. Following BCH, first
the advective term is computed by predicting the velocities to the interfaces,
doing the MAC projection, and then forming An+1/2. Now there is an explicit
viscosity term (at time-level n) present in the prediction, as a source term. The
provision velocity update is no longer a simple flux update, but instead requires
solving two decoupled diffusion-like equations (one for u and one for v). These
are differenced using Crank-Nicolson centering:

u⋆ − un

∆t
= −A(u),n+1/2 −∇p(x),n−1/2 +

ϵ

2
∇2(un + u⋆) (14.82)

v⋆ − vn

∆t
= −A(v),n+1/2 −∇p(y),n−1/2 +

ϵ

2
∇2(vn + v⋆) (14.83)

This involves two separate multigrid solves. Once U⋆ is found, the final projec-
tion is done as usual.

• Low Mach number combustion: In low-Mach number combustion flows, the fluid
is allowed to respond to local heat release by expanding. The velocity constraint
is derived by differentiating the equation of state along particle paths, leading
to the appearance of a source term:

∇ ·U = S (14.84)

Here, S, incorporates the compressibility effects due to the heat release and
diffusion. This system is used when modeling burning fronts (flames). This
type of flow can be thought of as linking two incompressible states (the fuel
and the ash) by the expansion across the interface.

The solution technique largely follows that of the incompressible flow. One
caveat, because the constraint now has a local heat source, S, doing the cell-
centered divergence described above leads to a decoupling of DU from the
local source, since the stencil of DU does not include the zone upon which it is
centered.

This system is described in detail in [13, 29, 61].

• Stratified flows: When the background is stratified, a different velocity constraint
can arise, capturing the expansion of the fluid element due to the pressure
change with altitude. For example, with an ideal gas, the equation of state can
be recast as:

∇ · (p1/γ
0) = 0 (14.85)

where p0(z) is the pressure as a function of height, representing the hydrostatic
background, and γ is the ratio of specific heats. For a general equation of
state, p(01/γ) is replaced with something more complicated (see [4–6] for the
development of a low Mach hydrodynamics method for stratified astrophysical
flows).

14.7—Extensions 241

• Nodal projection: instead of discretizing the final projection using a cell-centered
ϕ, ABS use a node-centered ϕ. While this is still an approximate projection, this
discretization couples in the zone we are centered on, and is said to be able to
do a better job removing pathological divergent velocity fields that cell-centered
projections stumble on.

Chapter15
Low Mach Number Methods

Incompressible flow represents the zero-Mach number limit of fluid flow—no com-
pressibility effects are modeled. We can extend the ideas of incompressibe flow to
allow us to model some compressibility effects, giving rise to low Mach number
methods.

15.1 Low Mach divergence constraints

The key idea in solvers for low Mach number flows is that, as a fluid element ad-
vects, its pressure remains the same as the background state. For an atmosphere,
this background state is a hydrostatic profile. For a smallscale combustion flow, this
background state is a spatially constant pressure (and constant-in-time if the domain
is open). We’ll denote this background pressure as p0(r, t), where r is a radial coor-
dinate.

Previously, we derived the pressure evolution with reactive sources (see Eq. 12.24)
by following the evolution of pressure as a fluid element moves (e.g., the Lagrangian
derivative). For the low Mach flows, we want to see the evolution p0 in the fluid
element, which is expressed as:

∂p0

∂t
+ U · ∇p0 + Γ1 p0∇ ·U = Γ1 p0σHnuc (15.1)

We can rewrite this as a constraint on the velocity field by solving for ∇ ·U:

∇ ·U +
1

Γ1 p0

Dp0

Dt
= σHnuc ≡ S (15.2)

with

σ =
∂p0/∂T|ρ

ρcp∂p0/∂ρ|T
(15.3)

git version: ae2370a3e0d5 . . . 243

244 Chapter 15. Low Mach Number Methods

This is the general constraint equation for low Mach flow. Note that the only approx-
imation we made is p → p0. This form of the constraint, for a general equation of
state, was originally derived in [5].

Combustion limit

A useful limit is smallscale combustion. In an open domain, we can take p0 as
constant, so Dp0/Dt = 0, and we are left with

∇ ·U = S (15.4)

This looks like the constraint for incompressible flow, but with a source to the di-
vergence. This source captures the compressible effects due to local heat release—as
a fluid parcel moves, the only changes to its density will come through local heat
release. Methods for this type of constraint are discussed in [13, 29, 61].

Atmospheric case

Another interesting case is that of an atmosphere. If we consider an ideal gas, then
Γ1 = γ = constant. A second appromation we take is that p0 = p0(r)—i.e., no time
dependence to the atmosphere. Finally, we’ll consider the case with no local heat
sources (S = 0). Then we have

∇ ·U +
1

γp0
U · ∇p0 = 0 (15.5)

which is equivalent to

∇ ·
(

p1/γ
0 U

)
= 0 (15.6)

This constraint captures the changes in compressibilty due to the background strat-
ification of an atmosphere. This form was originally derived for atmospheric flows
by [32] and generalized to stellar flows in [5]. If the structure of the atmosphere is
isentropic, then we know that d log p0 = γd log ρ0, where we use ρ0 to represent the
density corresponding to p0, and we can write this constraint as:

∇ · (ρ0U) = 0 (15.7)

This is the traditional anelastic constraint.

Extensions involving external heating sources or reactions are discussed in [4, 6], and
dealing with the non-constant Γ1 is discussed in [5, 43]. The time-dependence of the
background atmosphere is explored in [6] for plane-parallel atmospheres, following
the ideas from [1], and in [57] for spherical, self-gravitating bodies.

15.2—Multigrid for Variable-Density Flows 245

15.2 Multigrid for Variable-Density Flows

The solution methodology for these low Mach number systems follows that of the
incompressible flow, but with two additions. First, we need to incorporate a den-
sity (mass continuity) evolution equation—this will follow the same techniques we
already saw for advection, as we’ll see later. Next, we need to be able to enforce more
general forms of the divergence constraint, which as we’ll see in a moment, require
us to solve a variable-coefficient elliptic equation. Our multigrid technique will need
to be suitably modified.

We now need to solve an elliptic equation of the form:

∇ · (η∇ϕ) = f (15.8)

If we denote the discrete divergence and gradient operators as D and G, then our
operator will be Lη ≡ DηG. If we wish to use a cell-centered discretization for ϕ,
then using a standard centered-difference for D and G will result in a stencil that
reaches two zones on either side of the current zone. This can lead to an odd-even
decoupling.

Instead, we again use an approximate projection. We discretize the variable-coefficient
Laplacian as:

(Lηϕ)i,j =
ηi+1/2,j(ϕi+1,j − ϕi,j)− ηi−1/2,j(ϕi,j − ϕi−1,j)

∆x2 +

ηi,j+1/2(ϕi,j+1 − ϕi,j)− ηi,j−1/2(ϕi,j − ϕi,j−1)

∆y2 (15.9)

We can define the interface values of η as the averages of the cell-centered values,
e.g.,

ηi,j+1/2 =
1
2
(ηi,j + ηi,j+1) (15.10)

Our elliptic equation is then
(Lηϕ)i,j = fi,j (15.11)

The relaxation method for this operator again relies on isolating ϕi,j, yielding:

ϕi,j =
η̃i+1/2,jϕi+1,j + η̃i−1/2,jϕi−1,j + η̃i,j+1/2ϕi,j+1 + η̃i,j−1/2ϕi,j−1 − fi,j

η̃i+1/2,j + η̃i−1/2,j + η̃i,j+1/2 + η̃i,j−1/2

(15.12)

with the shorthand that η̃i±1/2,j = ηi±1/2,j/∆x2 and η̃i,j±1/2 = ηi,j±1/2/∆y2.

To put this into our multigrid framework, there are three changes we need to make:

• The smoothing function needs to implement the more general smoothing de-
scribed by Eq. 15.12.

246 Chapter 15. Low Mach Number Methods

• The residual function needs to compute (Lηϕ)i,j according to Eq. 15.9, and then
ri,j = fi,j − (Lηϕ)i,j.

• The coefficients, η should be averaged to the edges on the fine grid and then
restricted down the multigrid hierarchy as edge-based quantities.

15.2.1 Test problem

Periodic

To test the solver, we need to devise a problem with a known analytic solution. The
easiest way to do this is to pick an η(x) and ϕ and then do the divergence and
gradients to find the required righthand side, f . We’ll use periodic BCs, and for our
equation ∇ · (η∇ϕ) = f , the following provide a well-posed test problem:

η = 2 + cos(2πx) cos(2πy) (15.13)

f = −16.0π2 [cos(2πx) cos(2πy) + 1] sin(2πx) sin(2πy)

with the solution:
ϕtrue = sin(2πx) sin(2πy)

There is an important caveat when dealing with a purely-periodic problem. Since
there is no boundary values to “anchor” the solution, it is free to float. Solving the
elliptic problem will give use the correct ∇ϕ, but the average of ϕ over the domain is
unconstrained. For our algorithms, it is ∇ϕ that matters (that is the forcing term that
enters into the momentum equation).

When for checking convergence, we want to compare to the exact solution. We
therefore normalize ϕ by subtracting off its average value before computing the norm
of the error with respect to the exact solution:

ϵ = ∥ϕi,j − ϕ̄− ϕtrue
i,j ∥ , (15.14)

where
ϕ̄ =

1
Nx Ny

∑
i,j

ϕi,j (15.15)

As discussed in § 9.6, this can arise if the discrete form the righthand side, fi,j does
not sum exactly to zero. Figure 15.1 shows the solution to this problem with a 5122

grid. and the convergence of the solver described here is shown in Figure 15.2.

Dirichlet

We can run the same problem with Dirichlet boundary conditions on ϕ, and we
are free to pick different boundary conditions for η, since it represents a different
physical quantity. Since we only have homogeneous Dirichlet or Neumann BCs im-
plemented, we’ll run with Neumann BCs on η.

15.3—Atmospheric flows 247

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y
nx = 512

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

error

−0.0000225

−0.0000200

−0.0000175

−0.0000150

−0.0000125

−0.0000100

−0.0000075

−0.0000050

−0.0000025

Figure 15.1: Solution and error to the variable-coefficient Poisson problem defined in
Eq. 15.13. This test can be run with pyro multigrid/test_mg_vc_periodic.py.

15.3 Atmospheric flows

15.3.1 Equation Set

For atmospheric flows, we define a one-dimensional base state that is in hydrostatic
equilibrium. In general, this base state can be time-dependent, expanding in re-
sponse to heating in the atmosphere (see e.g. [1, 6]. Here we’ll consider only a
time-independent state.

We’ll follow the procedure defined in [57]: we define ρ0 as the lateral average of ρ:

ρ0 j =
1

Nx
∑

i
ρi,j (15.16)

and then we define the base state pressure, p0, by integrating the equation of hydro-
static equilibrium, dp0/dy = ρg, as:

p0 j+1 = p0 j +
∆y
2
(ρ0 j + ρ0 j+1)g (15.17)

with an initial condition of
p0jlo =

1
Nx

∑
i

pinitial
i,jlo (15.18)

The compressible momentum equation (written in terms of velocity is):

ρ
∂U
∂t

+ ρU · ∇U +∇p = ρg (15.19)

Subtracting off the base state, and defining the perturbational pressure (sometimes
called the dynamic pressure) as p′ = p− p0, and perturbational density as ρ′ = ρ− ρ0,
we have:

ρ
∂U
∂t

+ ρU · ∇U +∇p′ = ρ′g (15.20)

248 Chapter 15. Low Mach Number Methods

101 102 103

N

10-6

10-5

10-4

10-3

10-2

e
rr
o
r

Figure 15.2: Convergence of the variable-coefficient multigrid solver for
the test problem defined in Eq. 15.13. This test can be run with pyro
multigrid/test_mg_vc_periodic.py.

or
∂U
∂t

+ U · ∇U +
1
ρ
∇p′ =

ρ′

ρ
g (15.21)

Several authors [43, 83] explored the idea of energy conservation in a low Mach
number system and found that an additional term (which can look like a buoyancy)
is needed in the low Mach number formulation, yielding:

∂U
∂t

+ U · ∇U +
β0

ρ
∇
(

p′

β0

)
=

ρ′

ρ
g (15.22)

Completing the system are the continuity equation,

∂ρ

∂t
+∇ · (ρU) = 0 (15.23)

and the constraint,
∇ · (β0U) = 0 (15.24)

with β0 = p1/γ
0 .

15.3—Atmospheric flows 249

15.3.2 Solution Procedure

The general solution procedure is for a single step is:

I. Predict U to the interfaces

II. Enforce the divergence constraint on the interface U’s (the MAC projection) to get
Uadv.

Decomposing the velocity field as

U⋆ = Ud +
β0

ρ
∇ϕ (15.25)

as suggested from the form of the momentum equation, our Poisson equation
can be defined by multiplying by β0 and taking the divergence, and using
∇ · (β0Ud) = 0, giving

∇ · β2
0

ρ
∇ϕ = ∇ · (β0U⋆) (15.26)

Note that when written like this, ϕ has units of p′/β0.

For the MAC projection, we have edge-centered velocities (in their respective
coordinate direction). We define an edge-centered β0 as

β0 j+1/2 =
1
2
(β0 j + β0 j+1) (15.27)

(note that, since β0 is one-dimensional, we only average in the vertical direc-
tion). The divergence term is then:

[∇ · (β0U)]adv
i,j = β0 j

uadv
i+1/2,j − uadv

i−1/2,j

∆x
+

β0 j+1/2v
adv
i,j+1/2

− β0 j−1/2v
adv
i,j−1/2

∆y
(15.28)

We define the coefficient, η, in the Poisson equation as:

ηi,j =
β0

2
j

ρi,j
(15.29)

and bring it to edges simply through averaging. Multigrid is used to solve for
ϕi,j.

We then solve
(Lηϕ)i,j = [∇ · (β0U)]adv

i,j (15.30)

Once we solve for ϕ, we correct the velocity as:

Unew = U⋆ − β0

ρ
∇ϕ (15.31)

250 Chapter 15. Low Mach Number Methods

Since the MAC velocities are edge-centered, our correction appears as:

uadv
i+1/2,j = uadv

i+1/2,j −
(

β0

ρ

)

i+1/2,j

ϕi+1,j − ϕi,j

∆x
(15.32)

vadv
i,j+1/2 = vadv

i,j+1/2 −
(

β0

ρ

)

i,j+1/2

ϕi,j+1 − ϕi,j

∆y
(15.33)

III. Predict ρ to the interfaces

We need to solve the continuity equation. We use the same techniques that
were used for advection. Our equation is:

ρt + (ρu)x + (ρv)y = 0 (15.34)

The x-interface left state would be:

ρn+1/2

i+1/2,j,L = ρn
i,j +

∆x
2

∂ρ

∂x
+

∆t
2

∂ρ

∂t
+ . . .

= ρn
i,j +

∆x
2

∂ρ

∂x
+

∆t
2
[
−(ρu)x − (ρv)y

]
i,j

= ρn
i,j +

∆x
2

(
1− ∆t

∆x
ui,j

)
∂ρ

∂x︸ ︷︷ ︸
ρ̂n+1/2

i+1/2,j,L

−∆t
2

[ρux]i,j −
∆t
2
[
(ρv)y

]
i,j (15.35)

A similar construction would yield the right state at that interface, and the
y-interface states.

Since we already have the MAC-projected advected velocities at this point, we
can use them in the construction of the interface states and the upwinding. As
before, we split this into a normal part (the ρ̂ term) and “transverse” part (which
here includes the non-advective part of the divergence). We first construct the
normal parts as

ρ̂n+1/2

i+1/2,j,L = ρn
i,j +

1
2

(
1− ∆t

∆x
uadv

i+1/2,j

)
∆ρ

(x)
i,j (15.36)

and then solve the Riemann problem (upwinding) for these:

ρ̂n+1/2

i+1/2,j = U [uadv
i+1/2,j](ρ̂

n+1/2

i+1/2,j,L, ρ̂n+1/2

i+1/2,j,R) =

{
ρ̂n+1/2

i+1/2,j,L uadv
i+1/2,j > 0

ρ̂n+1/2

i+1/2,j,R uadv
i+1/2,j < 0

(15.37)

The same procedure is done for the y-interfaces.

The full states are then constructed using these “hat” states. For example,

ρn+1/2

i+1/2,j,L = ρ̂n+1/2

i+1/2,j,L −
∆t
2

ρi,j
uadv

i+1/2,j − uadv
i−1/2,j

∆x

− ∆t
2

ρ̂n+1/2

i,j+1/2
vadv

i,j+1/2
− ρ̂n+1/2

i,j−1/2
vadv

i,j−1/2

∆y
(15.38)

15.3—Atmospheric flows 251

Once the new states on both the x- and y-interfaces are constructed, we again
upwind to find the final ρ state on each interface:

ρn+1/2

i+1/2,j = U [uadv
i+1/2,j](ρ

n+1/2

i+1/2,j,L, ρn+1/2

i+1/2,j,R) =

{
ρn+1/2

i+1/2,j,L uadv
i+1/2,j > 0

ρn+1/2

i+1/2,j,R uadv
i+1/2,j < 0

(15.39)

IV. Do the conservative update of ρ

Once the interface states are found, we can conservatively-difference the conti-
nuity equation:

ρn+1
i,j = ρn

i,j −
∆t
∆x

(
ρn+1/2

i+1/2,ju
adv
i+1/2,j − ρn+1/2

i−1/2,ju
adv
i−1/2,j

)

− ∆t
∆y

(
ρn+1/2

i,j+1/2
vadv

i,j+1/2 − ρn+1/2

i,j−1/2
vadv

i,j−1/2

)
(15.40)

V. Update Un to Un+1,⋆

VI. Enforce the divergence constraint on Un+1

For the final projection, we have cell-centered velocties. We define the diver-
gence term as:

[∇ · (β0U)]⋆i,j = β0 j

u⋆
i+1,j − u⋆

i−1,j

2∆x
+

β0 j+1v⋆i,j+1 − β0 j−1v⋆i,j−1

2∆y
(15.41)

15.3.3 Timestep constraint

In addition to the advective timestep constraint, an additional constraint is needed if
the velocity field is initialially zero. In [4], a constraint based on the buoyancy forcing
is used. First, we compute the maxiumum buoyancy acceleration,

amax = max
{∣∣∣∣

ρ′g
ρ

∣∣∣∣
}

(15.42)

and then

∆tforce =

(
2∆x
amax

)1/2

(15.43)

This is based simply on ∆x = (1/2)at2—the time it takes for the buoyant force to
accelerate a fluid element across a zone width.

15.3.4 Bootstrapping

First we need to make sure that the initial velocity field satisfies our constraint

Next we need to find ∇p′n−1/2 for the first step.

252 Chapter 15. Low Mach Number Methods

15.4 Combustion

Taking p = p0 + p′, with p0 = constant, the system becomes:

∂ρ

∂t
+∇ · (ρU) = 0 (15.44)

∂ρU
∂t

+∇ · (ρUU) +∇p′ = 0 (15.45)

∇ ·U = S (15.46)

15.4.1 Species

15.4.2 Constraint

Our constraint equation is ∇ ·U = S. Decomposing the velocity field as

U⋆ = Ud +
1
ρ
∇ϕ (15.47)

our Poisson equation can be defined by taking the divergence, and using ∇ ·Ud = S,
giving

∇ · 1
ρ
∇ϕ = ∇ ·U⋆ − S (15.48)

15.4.3 Solution Procedure

The general solution procedure is for a single step is:

• React for ∆t/2

• Do the hydrodynamcis for ∆t

– Predict U to the interfaces

– Enforce the divergence constraint on the interface U’s (the MAC projec-
tion) to get Uadv.

– Predict ρ to the interfaces

– Do the conservative update of ρ

– Update Un to Un+1

– Enforce the divergence constraint on Un+1

• React for ∆t/2

Part VI

Code Descriptions

AppendixA
Using hydro_examples

A.1 Introduction

The hydro_examples codes are simple 1-d solvers written in python that illustrate
many of the ideas in these nodes. They are used for making many of the figures
found throughout (wherever the “Ï hydro_examples: ” note is found). Most are
written for python 3.x.

A.2 Getting hydro_examples

The hydro_examples codes are hosted on github:
https://github.com/zingale/hydro_examples

There are a few ways to get them. The simplest way is to just clone from github on
the commandline:

git clone https://github.com/zingale/hydro_examples

This will create a local git repo on your machine with all of the code. You can
then run the scripts, “as is” without needing to go to github anymore. Periodically,
there may be updates to the scripts, which you can obtain by issuing “git pull”
in the hydro_examples/ directory. Note that if you have made any local changes to
the scripts, git may complain. The process of merging changes is descibed online
in various places, e.g. “Resolving a merge conflict from the command line” from
github.

Alternately, you can use github’s web interface to fork it. Logon to github (or create
an account) and click on the “Fork” icon on the hydro_examples page. You can then
interact with your version of the repo as needed. This method will allow you to

git version: ae2370a3e0d5 . . . 255

https://github.com/zingale/hydro_examples
https://help.github.com/articles/resolving-a-merge-conflict-from-the-command-line

256 Chapter A. Using hydro_examples

push changes back to github, and, if you think they should be included in the main
hydro_examples repo, issue a pull-request.

A.3 hydro_examples codes

The codes in hydro_examples are organized into directories named after the chapters
in these notes. Each directory is self-contained. The following scripts are available:

• advection/

– advection.py: a 1-d second-order linear advection solver with a wide
range of limiters.

– fdadvect_implicit.py: a 1-d first-order implicit finite-difference advection
solver using periodic boundary conditions.

– fdadvect.py: a 1-d first-order explicit finite-difference linear advection
solver using upwinded differencing.

• burgers/

– burgers.py: a 1-d second-order solver for the inviscid Burgers’ equation,
with initial conditions corresponding to a shock and a rarefaction.

• compressible/

– cfl.py: a simple brute force script used to find the stability limit of a
multidimensional advection discretization.

– euler.ipynb: an Jupyter notebook using SymPy that derives the eigensys-
tem for the primitive-variable form of the Euler equations.

– euler-generaleos.ipynb: an Jupyter notebook using SymPy that derives
the eigensystem for the primitive-variable form of various forms of Euler
equations with a general EOS (with either (ρe) or γe augmenting the sys-
tem) and for gray radiation hydrodynamics. Additionally, this notebook
computes the full form of the interface states.

– riemann.py: the main Riemann class for gamma-law Euler equations. The
RiemannProblem class has methods to find the star state, plot the Hugoniot
curves, and sample the solution.

– riemann-2shock.py: draw the Hugoniot curves in the u-p plane for a pair
of states that comprise a Riemann problem, under the 2-shock approximation.

– riemann-phase.py: draw the Hugoniot curves in the u-p plane for a pair
of states that comprise a Riemann problem.

A.3—hydro_examples codes 257

– riemann-sod.py: solve the Riemann problem for the Sod initial conditions
and plot the exact solution.

• diffusion/

– diff_converge.py: make a convergence plot (error vs. resolution) of dif-
ferent explicit and implicit diffusion methods.

– diffusion_explicit.py: solve the constant-diffusivity diffusion equation
explicitly. The method is first-order accurate in time, but second-order
in space. A Gaussian profile is diffused—the analytic solution is also a
Gaussian.

– diffusion_fo_implicit.py: solve the constant-diffusivity diffusion equa-
tion implicitly. Backwards-difference time-discretization is used, resulting
in a first-order-in-time method. Spatial discretization is second order. A
Gaussian profile is diffused.

– diffusion_implicit.py: solve the constant-diffusivity diffusion equation
implicitly. Crank-Nicolson time-discretization is used, resulting in a second-
order method. A Gaussian profile is diffused.

• elliptic/

– poisson_fft.py: an FFT solver for a 2-d Poisson problem with periodic
boundaries.

• finite-volume/

– conservative-interpolation.ipynb: an Jupyter notebook using SymPy
that derives conservative interpolants.

• incompressible/

– project.py: a simple example of using a projection to recover a divergence-
free velocity field.

• multigrid/

– mg_converge.py: a convergence test of the multigrid solver. A Poisson
problem is solved at various resolutions and compared to the exact solu-
tion. This demonstrates second-order accuracy.

– mg_test.py: a simple driver for the multigrid solver. This sets up and
solves a Poisson problem and plots the behavior of the solution as a func-
tion of V-cycle number.

– multigrid.py: a multigrid class for cell-centered data. This implements
pure V-cycles. A square domain with 2N zones (N a positive integer) is
required.

258 Chapter A. Using hydro_examples

– patch1d.py: a class for 1-d cell-centered data that lives on a grid. This
manages the data, handles boundary conditions, and provides routines
for prolongation and restriction to other grids.

– smooth.py: solve a Poisson equation with smoothing only (but we still use
the interface through the multigrid object).

• multiphysics/

– burgersvisc.py: solve the viscous Burgers equation. The advective terms
are treated explicitly with a second-order accurate method. The diffusive
term is solved using an implicit Crank-Nicolson discretization. The overall
coupling is second-order accurate.

– diffusion-reaction.py: solve a diffusion-reaction equation that propa-
gates a diffusive reacting front (flame). A simple reaction term is mod-
eled. The diffusion is solved using a second-order Crank-Nicolson dis-
cretization. The reactions are evolved using the VODE ODE solver (via
SciPy). The two processes are coupled together using Strang-splitting to
be second-order accurate in time.

AppendixB
Using pyro

B.1 Introduction

pyro is a simple two-dimensional code that implements the core solvers described in
these notes. It is written primarily in python, with some kernels in Fortran. Clarity
of the methods is emphasized over performance.

B.2 Getting pyro

pyro can be downloaded from its github repository, https://github.com/python-hydro/
pyro2 as:

git clone https://github.com/python-hydro/pyro2

pyro uses the h5py, matplotlib, and numpy libraries. Several routines are written
in Fortran and need to be compiled. The script mk.sh will build the packages. This
requires that f2py is installed. By default, pyro will use python 3. The following
sequence will setup pyro:

• Set the PYRO_HOME environment variable to point to the main pyro2/ directory,
e.g.,

export PYRO_HOME=/path/to/pyro2

• Set the PYTHONPATH environment variable to point to the main pyro2/ directory,
e.g.,

export PYTHONPATH="$PYTHONPATH:$PYRO_HOME"

git version: ae2370a3e0d5 . . . 259

https://github.com/python-hydro/pyro2
https://github.com/python-hydro/pyro2

260 Chapter B. Using pyro

• Build the Fortran source using the mk.sh script. In the pyro2/ directory, simply
do

./mk.sh

B.3 pyro solvers

pyro offers the following 2-d solvers:

• advection: an unsplit, second-order method for linear advection, following the
ideas from Chapter 4.

• advection_rk: an alternate advection algorithm using method-of-lines time inte-
gration, again following the ideas from Chapter 4.

• compressible: an unsplit, second-order compressible hydrodynamics solver us-
ing the piecewise linear reconstruction discussed in Chapter 8.

• compressible_rk: an alternate compressible algorithm using method-of-lines time
integration, using the piecewise linear reconstruction discussed in Chapter 8.

• diffusion: a second-order implicit diffusion solver, based on the ideas from
Chapter 10.

• incompressible: a second-order incompressible hydrodynamics solver using a
cell-centered approximate projection, as discussed in Chapter 14.

• lm_atm: a low-Mach number hydrodynamics solver for atmospheric flows, as
discussed in S 15.3

• multigrid: a multigrid solver for constant-coefficient Helmholtz elliptic equa-
tions. This follows the ideas from Chapter 9, and is used by the diffusion and
incompressible solvers.

B.4 pyro’s structure

The structure of the code and descriptions of the various runtime parameters is
found on the pyro webpage, http://python-hydro.github.io/pyro2/, and described
in [86]. Here we provide a summary.

The grid structure is managed by the patch.Grid2d class. Data is that lives on the
grid is contained in a patch.CellCenterData2d object. Methods are available to pro-
vide access to the data and fill the ghost cells. When accessing the data on the
grid, a array_indexer.ArrayIndexer object is returned. This is a subclass of the nor-
mal NumPy ndarray that provides additional methods that are useful for interacting
with finite-volume data. In particular, for an object a, you can do a.ip(1) to mimic

http://python-hydro.github.io/pyro2/

B.5—Running pyro 261

ai+1,j. The Jupyter notebook mesh-examples.ipynb walks through these classes to
demonstrate how they work.

Each pyro solver is its own python module. All but the multigrid solver represent
time-dependent problems. Each of these provide a Simulation class that provides
the routines necessary to initialize the solver, determine the timestep, and evolve the
solution in time. Each solver has one or more sets of initial conditions defined in the
solver’s problems/ directory.

All time-dependent problems are run through the pyro.py script. The general form
is:

./pyro.py solver problem inputs

where solver is one of {advection, advection_rk, compressible, compressible_rk,
diffusion, incompressible, lm_atm}, problem is one of the problems defined in the
solver’s problems/ directory, and inputs is the name of an input file that defines the
values of runtime parameter.

The possible runtime parameters and their defaults are defined in the _defaults files
in the main directory and each solver and problem directory. Note that the inputs
file need not be in the pyro2/ directory. The solver’s problems/ directory will also be
checked.

B.5 Running pyro

A simple Gaussian advection simulation is provided by the advection smooth prob-
lem. This is run as:

./pyro.py advection smooth inputs.smooth

As this is run, the solution will be visualized at each step, showing the progression
of the simulation.

A list of the problems available for each solver is given in Table B.1. For the multigrid
solver, there are scripts available in the multigrid/ directory that illustrate its use.

B.6 Output and visualization

pyro uses HDF5 for I/O* The simple script plot.py in the pyro/ directory can read
in the data and plot the output. It will determine which solver was used for the run
and do the visualization using that solver’s methods.

*Previously a simple python pickle was done, but this was not very portable.

https://github.com/python-hydro/pyro2/blob/master/mesh/mesh-examples.ipynb

262 Chapter B. Using pyro

B.7 Testing

The script test.py provides an interface to pyro’s unit and regression tests. Simply
running it was ./test.py will executate all of the tests. The unit tests are enabled
through the pytest framework.

B.7—Testing 263

so
lv

er
se

ct
io

n
pr

ob
le

m
pr

ob
le

m
de

sc
ri

pt
io

n

ad
ve

ct
io

n
§

5
.4

.2
sm

oo
th

ad
ve

ct
a

sm
oo

th
G

au
ss

ia
n

pr
ofi

le

to
ph

at
ad

ve
ct

a
di

sc
on

ti
nu

ou
s

to
ph

at
pr

ofi
le

ad
ve

ct
io

n_
rk

§
5
.3

sa
m

e
as

ad
ve

ct
io

n

co
mp

re
ss

ib
le

C
h.

8

ad
ve

ct
a

G
au

ss
ia

n
pr

ofi
le

in
th

e
de

ns
it

y
fie

ld
ad

ve
ct

ed
di

ag
on

al
ly

(i
n

co
ns

ta
nt

pr
es

su
re

ba
ck

gr
ou

nd
)

bu
bb

le
a

bu
oy

an
t

bu
bb

le
in

a
st

ra
ti

fie
d

at
m

os
ph

er
e

kh
se

tu
p

a
sh

ea
r

la
ye

r
to

dr
iv

e
K

el
vi

n-
H

el
m

ho
lt

z
in

st
ab

ili
ti

es

qu
ad

2
-d

R
ie

m
an

n
pr

ob
le

m
ba

se
d

on
[6

8
]

rt
a

si
m

pl
e

R
ay

le
ig

h-
Ta

yl
or

in
st

ab
ili

ty

se
do

v
th

e
cl

as
si

c
Se

do
v-

Ta
yl

or
bl

as
t

w
av

e

so
d

th
e

So
d

sh
oc

k
tu

be
pr

ob
le

m

co
mp

re
ss

ib
le

_r
k

C
h.

8
sa

m
e

as
co

mp
re

ss
ib

le

di
ff

us
io

n
§

1
0
.4

ga
us

si
an

di
ff

us
e

an
in

it
ia

lG
au

ss
ia

n
pr

ofi
le

in
co

mp
re

ss
ib

le
C

h.
1
4

co
nv

er
ge

A
si

m
pl

e
in

co
m

pr
es

si
bl

e
pr

ob
le

m
w

it
h

kn
ow

n
an

al
yt

ic
so

-
lu

ti
on

.

sh
ea

r
a

do
ub

ly
-p

er
io

di
c

sh
ea

r
la

ye
r

lm
_a

tm
C

h.
1
5
.3

bu
bb

le
a

bu
oy

an
t

bu
bb

le
in

a
st

ra
ti

fie
d

at
m

os
ph

er
e

Ta
bl

e
B.

1
:
p
yr
o

so
lv

er
s

an
d

th
ei

r
di

st
ri

bu
te

d
pr

ob
le

m
s.

Th
e

re
le

va
nt

se
ct

io
n

in
th

es
e

no
te

s
th

at
de

sc
ri

be
s

th
e

im
pl

em
en

ta
ti

on
is

al
so

gi
ve

n.

AppendixC
Using hydro1d

C.1 Introduction

hydro1d is a one-dimensional compressible hydrodynamics code written in modern
Fortran. In particular, it implements the piecewise parabolic method described in
§ 8.2.3, in both Cartesian and spherical geometries. It assumes a gamma-law equation
of state and supports gravity.

C.2 Getting hydro1d

hydro1d can be downloaded from its github repository, https://github.com/zingale/
hydro1d as:

git clone https://github.com/zingale/hydro1d

Some details on the code can be found on its webpage: http://zingale.github.io/
hydro1d/ . As with the other codes detailed here, if you wish to contribute, fix bugs,
etc., you can create issues or pull requests through the code’s github page.

C.3 hydro1d’s structure

There a few major data structures in hydro1d, defined in the grid.f90 file:

• grid_t : this holds the grid information, with fields for the low and high indi-
cies of the valid domain, and coordinate information (including interface areas
and volumes, to support spherical geometry).

• gridvar_t : data that lives on a grid. This holds both a data array and the
grid_t that it is defined on.

git version: ae2370a3e0d5 . . . 265

https://github.com/zingale/hydro1d
https://github.com/zingale/hydro1d
http://zingale.github.io/hydro1d/
http://zingale.github.io/hydro1d/

266 Chapter C. Using hydro1d

• gridedgevar_t : like gridvar_t, but for data defined at the interfaces between
zones.

The integer keys defined in the variables_module allow you to index the difference
state fields in the data arrays of the grid variables.

C.4 Running hydro1d

Each problem is in it’s own directory, and the code is built and run there. For exam-
ple, to run the Sod shock tube problem, do:

cd hydro1d/sod

make

./hydro1d inputs-sod-xp

As the code is built, object files and modules will be output into the _build sub-
directory. make realclean will clean up the objects. Things are setup for gfortran

by default—you will need to edit the Ghydro.mak with different options for different
compilers. Some bits of Fortran 2003 and 2008 are used, so an up-to-date compiler is
needed.

A number of runtime options can be set—these are listed in params.f90 and probparams.f90

(the latter is problem-specific parameters).

C.5 Problem setups

The following problem setups are provided:

• advect : a simple advection test where a density profile is advected through
periodic boundaries, in a uniform pressure medium (to suppress dynamics)

• hse : a simple 1-d atmosphere in hydrostatic equilibrium. This test works to
see if the atmosphere stays in HSE.

• sedov : a 1-d spherical Sedov explosion.

• sod : a shock tube setup for testing against exact Riemann solvers.

Bibliography

[1] A. Almgren. A new look at the pseudo-incompressible solution to Lamb’s prob-
lem of hydrostatic adjustment. J Atmos Sci, 57:995–998, April 2000. No citations.

[2] A. S. Almgren, V. E. Beckner, J. B. Bell, M. S. Day, L. H. Howell, C. C. Joggerst,
M. J. Lijewski, A. Nonaka, M. Singer, and M. Zingale. CASTRO: A New Com-
pressible Astrophysical Solver. I. Hydrodynamics and Self-gravity. Astrophys J,
715:1221–1238, June 2010. No citations.

[3] A. S. Almgren, J. B. Bell, and W. Y. Crutchfield. Approximate projection meth-
ods: Part I. Inviscid analysis. SIAM J Sci Comput, 22(4):1139–59, 2000. No cita-
tions.

[4] A. S. Almgren, J. B. Bell, A. Nonaka, and M. Zingale. Low Mach Number
Modeling of Type Ia Supernovae. III. Reactions. Astrophys J, 684:449–470, 2008.
No citations.

[5] A. S. Almgren, J. B. Bell, C. A. Rendleman, and M. Zingale. Low Mach Number
Modeling of Type Ia Supernovae. I. Hydrodynamics. Astrophys J, 637:922–936,
February 2006. No citations.

[6] A. S. Almgren, J. B. Bell, C. A. Rendleman, and M. Zingale. Low Mach Number
Modeling of Type Ia Supernovae. II. Energy Evolution. Astrophys J, 649:927–938,
October 2006. No citations.

[7] A. S. Almgren, J. B. Bell, and W. G. Szymczak. A numerical method for the
incompressible Navier-Stokes equations based on an approximate projection.
SIAM J Sci Comput, 17(2):358–369, March 1996. No citations.

[8] A. Aspden, N. Nikiforakis, S. Dalziel, and J. B. Bell. Analysis of implicit
LES methods. Communications in Applied Mathematics and Computational Science,
3(1):103–126, 2008. No citations.

git version: ae2370a3e0d5 . . . 267

268 BIBLIOGRAPHY

[9] J. B. Bell, P. Colella, and H. M. Glaz. A Second Order Projection Method for the
Incompressible Navier-Stokes Equations. J Comput Phys, 85:257, December 1989.
No citations.

[10] J. B. Bell, P. Colella, and L. H. Howell. An efficient second-order projection
method for viscous incompressible flow. In Proceedings of the Tenth AIAA Com-
putational Fluid Dynamics Conference, pages 360–367. AIAA, June 1991. see also:
https://seesar.lbl.gov/anag/publications/colella/A_2_10.pdf. No citations.

[11] J. B. Bell, C. N. Dawson, and G. R. Shubin. An unsplit, higher order Godunov
method for scalar conservation l aws in multiple dimensions. J Comput Phys,
74:1–24, 1988. No citations.

[12] J. B. Bell, M. S. Day, C. A. Rendleman, S. E. Woosley, and M. Zingale. Direct
Numerical Simulations of Type Ia Supernovae Flames. II. The Rayleigh-Taylor
Instability. Astrophys J, 608:883–906, June 2004. No citations.

[13] J. B. Bell, M. S. Day, C. A. Rendleman, S. E. Woosley, and M. A. Zingale. Adaptive
low Mach number simulations of nuclear flame microphysics. J Comput Phys,
195(2):677–694, 2004. No citations.

[14] J. B. Bell and D. L. Marcus. A second-order projection method for variable-
density flows. J Comput Phys, 101(2):334 – 348, 1992. No citations.

[15] M. J. Berger and P. Colella. Local adaptive mesh refinement for shock hydrody-
namics. J Comput Phys, 82(1):64–84, May 1989. No citations.

[16] G. Boffetta and R. E. Ecke. Two-Dimensional Turbulence. Annual Review of Fluid
Mechanics, 44:427–451, January 2012. No citations.

[17] W. L. Briggs, V-E. Henson, and S. F. McCormick. A Mutigrid Tutorial, 2nd Ed.
SIAM, 2000. No citations.

[18] P. N. Brown, G. D. Byrne, and A. C. Hindmarsh. VODE: A variable coefficient
ode solver. SIAM J. Sci. Stat. Comput., 10:1038–1051, 1989. No citations.

[19] G. L. Bryan, M. L. Norman, J. M. Stone, R. Cen, and J. P. Ostriker. A piecewise
parabolic method for cosmological hydrodynamics. Computer Physics Communi-
cations, 89:149–168, August 1995. No citations.

[20] G. D. Byrne and A. C. Hindmarsh. Stiff ODE Solvers: A Review of Current and
Coming Attractions. UCRL-94297 Preprint, 1986. No citations.

[21] A. J. Chorin. Numerical solution of the Navier-Stokes equations. Math. Comp.,
22:745–762, 1968. No citations.

[22] A. R. Choudhuri. The physics of fluids and plasmas : an introduction for astrophysi-
cists /. November 1998. No citations.

BIBLIOGRAPHY 269

[23] P. Colella. A direct Eulerian MUSCL scheme for gas dynamics. SIAM J Sci Stat
Comput, 6(1):104–117, 1985. No citations.

[24] P. Colella. Multidimensional upwind methods for hyperbolic conservation laws.
J Comput Phys, 87:171–200, March 1990. No citations.

[25] P. Colella and H. M. Glaz. Efficient solution algorithms for the Riemann problem
for real gases. J Comput Phys, 59:264–289, June 1985. No citations.

[26] P. Colella and E. G. Puckett. Modern Numerical Meth-
ods for Fluid Flow. unpublished manuscript. obtained from
http://www.amath.unc.edu/Faculty/minion/class/puckett/. No citations.

[27] P. Colella and M. D. Sekora. A limiter for PPM that preserves accuracy at smooth
extrema. J Comput Phys, 227:7069–7076, July 2008. No citations.

[28] P. Colella and P. R. Woodward. The Piecewise Parabolic Method (PPM) for
Gas-Dynamical Simulations. J Comput Phys, 54:174–201, September 1984. No
citations.

[29] M. S. Day and J. B. Bell. Numerical simulation of laminar reacting flows with
complex chemistry. Combust. Theory Modelling, 4(4):535–556, 2000. No citations.

[30] M. de Val-Borro, R. G. Edgar, P. Artymowicz, P. Ciecielag, P. Cresswell,
G. D’Angelo, E. J. Delgado-Donate, G. Dirksen, S. Fromang, A. Gawryszczak,
H. Klahr, W. Kley, W. Lyra, F. Masset, G. Mellema, R. P. Nelson, S.-J.
Paardekooper, A. Peplinski, A. Pierens, T. Plewa, K. Rice, C. Schäfer, and
R. Speith. A comparative study of disc-planet interaction. Mon Not R Astron
Soc, 370:529–558, August 2006. No citations.

[31] G. Dimonte, D. L. Youngs, A. Dimits, S. Weber, M. Marinak, S. Wunsch,
C. Garasi, A. Robinson, M. J. Andrews, P. Ramaprabhu, A. C. Calder, B. Fryx-
ell, J. Biello, L. Dursi, P. MacNeice, K. Olson, P. Ricker, R. Rosner, F. Timmes,
H. Tufo, Y.-N. Young, and M. Zingale. A comparative study of the turbulent
Rayleigh-Taylor instability using high-resolution three-dimensional numerical
simulations: The Alpha-Group collaboration. Physics of Fluids, 16:1668–1693,
May 2004. No citations.

[32] D. R. Durran. Improving the anelastic approximation. J Atmos Sci, 46(11):1453–
1461, 1989. No citations.

[33] C. S. Frenk, S. D. M. White, P. Bode, J. R. Bond, G. L. Bryan, R. Cen, H. M. P.
Couchman, A. E. Evrard, N. Gnedin, A. Jenkins, A. M. Khokhlov, A. Klypin,
J. F. Navarro, M. L. Norman, J. P. Ostriker, J. M. Owen, F. R. Pearce, U.-L. Pen,
M. Steinmetz, P. A. Thomas, J. V. Villumsen, J. W. Wadsley, M. S. Warren, G. Xu,
and G. Yepes. The Santa Barbara Cluster Comparison Project: A Comparison
of Cosmological Hydrodynamics Solutions. Astrophys J, 525:554–582, November
1999. No citations.

270 BIBLIOGRAPHY

[34] B. Fryxell, K. Olson, P. Ricker, F. X. Timmes, M. Zingale, D. Q. Lamb, P. Mac-
Neice, R. Rosner, J. W. Truran, and H. Tufo. FLASH: An Adaptive Mesh Hydro-
dynamics Code for Modeling Astrophysical Thermonuclear Flashes. Astrophys J
Supplement, 131:273–334, November 2000. No citations.

[35] A. Garcia. Numerical Methods for Physics, 2nd Edition. Addison-Wesley, 1999. No
citations.

[36] G.A. Gerolymos, D. Sénéchal, and I. Vallet. Very-high-order WENO schemes.
Journal of Computational Physics, 228(23):8481–8524, dec 2009. No citations.

[37] S. K. Godunov. A difference method for numerical calculation of discontinuous
solutions of the equations of hydrodynamics. Mat. Sb. (N.S.), 47(89):271–306,
1959. No citations.

[38] David Goldberg. What every computer scientist should know about floating
point arithmetic. ACM Computing Surveys, 23(1):5–48, 1991. No citations.

[39] S. Gottlieb and C.-W. Shu. Total Variation Diminishing Runge-Kutta Schemes.
ICASE Report No. 96-50, NASA Langley Research Center, July 1996. No citations.

[40] C. J. Hansen, S. D. Kawaler, and V. Trimble. Stellar interiors : physical principles,
structure, and evolution. 2004. No citations.

[41] K. Heitmann, Z. Lukić, P. Fasel, S. Habib, M. S. Warren, M. White, J. Ahrens,
L. Ankeny, R. Armstrong, B. O’Shea, P. M. Ricker, V. Springel, J. Stadel, and
H. Trac. The cosmic code comparison project. Computational Science and Discov-
ery, 1(1):015003, October 2008. No citations.

[42] J. R. Kamm and F. X. Timmes. On Efficient Generation of Numerically Robust
Sedov Solutions. 2007. Los Alamos preprint la-ur-07-2849, http://cococubed.
asu.edu/papers/la-ur-07-2849.pdf. No citations.

[43] Rupert Klein and Olivier Pauluis. Thermodynamic consistency of a pseudoin-
compressible approximation for general equations of state. J Atmos Sci, March
2012. No citations.

[44] C. B. Laney. Computational Gasdynamics. Cambridge, 1998. No citations.

[45] R. J. LeVeque. Wave Propagation Algorithms for Multidimensional Hyperbolic
Systems. Journal of Computational Physics, 131:327–353, March 1997. No citations.

[46] Randall J. LeVeque. Finite-Volume Methods for Hyperbolic Problems. Cambridge
University Press, 2002. No citations.

[47] Randall J. LeVeque. Finite Difference Methods for Ordinary and Partial Differential
Equations: Steady-State and Time-Dependent Problems. Classics in Applied Math-
ematics. SIAM, Society of Industrial and Applied Mathematics, 2007. No cita-
tions.

http://cococubed.asu.edu/papers/la-ur-07-2849.pdf
http://cococubed.asu.edu/papers/la-ur-07-2849.pdf

BIBLIOGRAPHY 271

[48] C. M. Malone, A. Nonaka, A. S. Almgren, J. B. Bell, and M. Zingale. Multidimen-
sional Modeling of Type I X-ray Bursts. I. Two-dimensional Convection Prior to
the Outburst of a Pure 4He Accretor. Astrophys J, 728:118, February 2011. No
citations.

[49] Len G. Margolin and William J. Rider. A rationale for implicit turbulence mod-
elling. International Journal for Numerical Methods in Fluids, 39(9):821–841, 2002.
No citations.

[50] D. F. Martin and P. Colella. A Cell-Centered Adaptive Projection Method for the
Incompressible Euler Equations. Journal of Computational Physics, 163:271–312,
September 2000. No citations.

[51] S. May, A. J. Nonaka, A. S. Almgren, and J. B. Bell. An unsplit, higher order
Godunov method using quadratic reconstruction for advection in multiple di-
mensions. Communications in Applied Mathematics and Computational Science, 6(1),
2011. No citations.

[52] P. McCorquodale and P. Colella. A high-order finite-volume method for conser-
vation laws on locally refined grids. Communication in Applied Mathematics and
Computational Science, 6(1):1–25, 2011. No citations.

[53] G. H. Miller and P. Colella. A Conservative Three-Dimensional Eulerian Method
for Coupled Solid-Fluid Shock Capturing. J Comput Phys, 183:26–82, November
2002. No citations.

[54] M. L. Minion. A Projection Method for Locally Refined Grids. J Comput Phys,
127:158–177, 1996. No citations.

[55] J. J. Monaghan. An introduction to SPH. Computer Physics Communications,
48:89–96, January 1988. No citations.

[56] M. Newman. Computational Physics. CreateSpace Independent Publishing Plat-
form, 2012. No citations.

[57] A. Nonaka, A. S. Almgren, J. B. Bell, M. J. Lijewski, C. M. Malone, and M. Zin-
gale. MAESTRO: An adaptive low mach number hydrodynamics algorithm for
stellar flows. Astrophys J Supplement, 188:358–383, 2010. No citations.

[58] M. Omang, S. Børve, and J. Trulsen. SPH in spherical and cylindrical coordi-
nates. Journal of Computational Physics, 213:391–412, March 2006. No citations.

[59] E. S. Oran and J. B. Boris. Numerical Simulation of Reactive Flow. Cambridge
University Press, 2nd edition, 2005. No citations.

[60] T. Pang. An Introduction to Computational Physics, 2nd Edition. Cambridge, 2006.
No citations.

272 BIBLIOGRAPHY

[61] R. B. Pember, L. H. Howell, J. B. Bell, P. Colella, W. Y. Crutchfield, W. A. Fiveland,
and J. P. Jessee. An adaptive projection method for unsteady low-Mach number
combustion. Comb. Sci. Tech., 140:123–168, 1998. No citations.

[62] Norbert Peters. Turbulent Combustion. Cambridge University Press, 2000. No
citations.

[63] T. Plewa and E. Müller. The consistent multi-fluid advection method. Astron
Astrophys, 342:179–191, February 1999. No citations.

[64] R. D. Richtmyer and K. W. Morton. Different Methods for Initial-Value Problems.
Krieger Publishing Company, 2nd edition, 1994. No citations.

[65] W. J. Rider. Approximate projection methods for incompressible flow: Imple-
mentation, variants and robustness. Technical report, LANL UNCLASSIFIED
REPORT LA-UR-94-2000, LOS ALAMOS NATIONAL LABORATORY, 1995. No
citations.

[66] J. Saltzman. An Unsplit 3D Upwind Method for Hyperbolic Conservation Laws.
J Comput Phys, 115:153–168, November 1994. No citations.

[67] W. Schmidt. Large Eddy Simulations in Astrophysics. Living Reviews in Compu-
tational Astrophysics, 1:2, December 2015. No citations.

[68] C. W. Schulz-Rinne, J. P. Collins, and H. M. Glaz. Numerical Solution of the
Riemann Problem for Two-Dimensional Gas Dynamics. SIAM J Sci Comput,
14(6):1394–1414, 1993. No citations.

[69] Carsten W. Schulz-Rinne, James P. Collins, and Harland M. Glaz. Numerical so-
lution of the riemann problem for two-dimensional gas dynamics. SIAM Journal
on Scientific Computing, 14(6):1394–1414, 1993. No citations.

[70] L. I. Sedov. Similarity and Dimensional Methods in Mechanics. Academic Press,
1959. translated from the 4th Russian Ed. No citations.

[71] C.-W. Shu and S. Osher. Efficient implementation of essentially non-oscillatory
shock-capturing schemes II. J Comput Phys, 83:32–78, 1989. No citations.

[72] Chi-wang Shu. Essentially Non-Oscillatory and Weighted Essentially Non-
Oscillatory Schemes for Hyperbolic Conservation Laws. Technical Report 97,
1997. No citations.

[73] F. H. Shu. Physics of Astrophysics, Vol. II. University Science Books, 1992. No
citations.

[74] G. A. Sod. A survey of several finite difference methods for systems of nonlinear
hyperbolic conservation la ws. J Comput Phys, 27:1–31, April 1978. No citations.

BIBLIOGRAPHY 273

[75] V. Springel. E pur si muove: Galilean-invariant cosmological hydrodynamical
simulations on a moving mesh. Mon Not R Astron Soc, 401:791–851, January
2010. No citations.

[76] J. M. Stone, T. A. Gardiner, P. Teuben, J. F. Hawley, and J. B. Simon. Athena: A
New Code for Astrophysical MHD. Astrophys J Suppl S, 178:137–177, September
2008. No citations.

[77] G. Strang. On the construction and comparison of difference schemes. SIAM
Journal on Numerical Analysis, 5(3):pp. 506–517, 1968. No citations.

[78] F. X. Timmes. Integration of Nuclear Reaction Networks for Stellar Hydrody-
namics. Astrophys J Supplement, 124:241–263, September 1999. No citations.

[79] F. X. Timmes. Integration of Nuclear Reaction Networks for Stellar Hydrody-
namics. APJ:sup, 124:241–263, September 1999. No citations.

[80] F. X. Timmes and S. E. Woosley. The conductive propagation of nuclear flames.
I - Degenerate C + O and O + NE + MG white dwarfs. Astrophys J, 396:649–667,
September 1992. No citations.

[81] V.A. Titarev and E.F. Toro. Finite-volume {WENO} schemes for three-
dimensional conservation laws. Journal of Computational Physics, 201(1):238 –
260, 2004. No citations.

[82] E. F. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer,
1997. No citations.

[83] Geoffrey M. Vasil, Daniel Lecoanet, Benjamin P. Brown, Toby S. Wood, and
Ellen G. Zweibel. Energy conservation and gravity waves in sound-proof
treatments of stellar interiors. ii. lagrangian constrained analysis. Astrophys J,
773:169–, 2013. No citations.

[84] Natalia Vladimirova, V. Gregory Weirs, and Lenya Ryzhik. Flame capturing
with an advection-reaction-diffusion model. Combustion Theory and Modelling,
10(5):727–747, 2006. No citations.

[85] S. Yakowitz and F. Szidarovszky. An Introduction to Numerical Computations, 2nd
edition. Prentice Hall, 1989. No citations.

[86] M. Zingale. pyro: A teaching code for computational astrophysical hydrody-
namics. Astronomy and Computing, 2014. accepted for publication. No citations.

[87] M. Zingale, L. J. Dursi, J. ZuHone, A. C. Calder, B. Fryxell, T. Plewa, J. W. Truran,
A. Caceres, K. Olson, P. M. Ricker, K. Riley, R. Rosner, A. Siegel, F. X. Timmes,
and N. Vladimirova. Mapping Initial Hydrostatic Models in Godunov Codes.
Astrophys J Supplement, 143:539–565, December 2002. No citations.

274 BIBLIOGRAPHY

[88] M. Zingale and M. P. Katz. On the Piecewise Parabolic Method for Compressible
Flow With Stellar Equations of State. Astrophys J Supplement, 216:31, February
2015. No citations.

	list of figures
	list of exercises
	preface
	I Basics
	Simulation Overview
	What is simulation?
	Numerical basics
	Sources of error
	Differentiation and integration
	Root finding
	Norms
	ODEs
	FFTs

	Classification of PDEs
	Introduction
	Hyperbolic PDEs
	Elliptic PDEs
	Parabolic PDEs

	Finite-Volume Grids
	Discretization
	Grid basics
	Finite-volume grids
	Differences and order of accuracy
	Conservation
	Boundary conditions with finite-volume grids

	Numerical implementation details
	Going further

	II Advection and Hydrodynamics
	Advection Basics
	The linear advection equation
	First-order advection in 1-d and finite-differences
	Stability
	Domain of dependence

	Implicit-in-time
	Eulerian vs. Lagrangian frames
	Errors and convergence rate

	Second- (and Higher-) Order Advection
	Advection and the finite-volume method
	Second-order predictor-corrector scheme
	Limiting
	Reconstruct-evolve-average

	Method of lines approach
	Multi-dimensional advection
	Dimensionally split
	Unsplit multi-dimensional advection
	Timestep limiter for multi-dimensions
	Method-of-lines in multi-dimensions

	High-Order Finite difference methods
	The problem with higher-order finite volume methods
	Finite differences
	WENO reconstruction

	Going further
	pyro experimentation

	Burgers' Equation
	Burgers' equation
	Characteristic tracing
	Going further
	WENO methods, nonlinear equations, and flux-splitting

	Euler Equations: Theory
	Euler equation properties
	The Riemann problem
	Rarefactions
	Shocks
	Finding the Star State
	Complete Solution

	Other thermodynamic equations

	Euler Equations: Numerical Methods
	Introduction
	Reconstruction of interface states
	Piecewise constant
	Piecewise linear
	Piecewise parabolic
	Flattening and contact steepening
	Limiting on characteristic variables

	Riemann solvers
	Conservative update
	Artificial viscosity

	Boundary conditions
	Multidimensional problems
	3-d unsplit

	Source terms
	Simple geometries
	Some Test problems
	Shock tubes
	Sedov blast wave
	Advection
	Slow moving shock
	Two-dimensional Riemann problems

	Method of lines integration and higher order
	Thermodynamic issues
	Defining temperature
	General equation of state

	WENO methods for the Euler equations
	Extensions

	III Elliptic and Parabolic Problems
	Elliptic Equations and Multigrid
	Elliptic equations
	 Fourier Method
	Relaxation
	Boundary conditions
	Residual and true error
	Norms
	Performance
	Frequency/wavelength-dependent error

	Multigrid
	Prolongation and restriction on cell-centered grids
	Multigrid cycles
	Bottom solver
	Boundary conditions throughout the hierarchy
	Stopping criteria

	Solvability
	Going Further
	Red-black Ordering
	More General Elliptic Equations

	Diffusion
	Diffusion
	Explicit differencing
	Implicit with direct solve
	Implicit multi-dimensional diffusion via multigrid
	Convergence

	Non-constant Conductivity
	Diffusion in Hydrodynamics

	IV Multiphysics applications
	Model Multiphysics Problems
	Integrating Multiphysics
	Ex: diffusion-reaction
	Ex: advection-diffusion
	Convergence without an analytic solution

	Reactive Flow
	Introduction
	Operator splitting approach
	Adding species to hydrodynamics
	Integrating the reaction network
	Incorporating explicit diffusion

	Burning modes
	Convective burning
	Deflagrations
	Detonations

	Planning a Simulation
	How to setup a simulation?
	Dimensionality and picking your resolution
	Boundary conditions
	Timestep considerations
	Convergence and multiphysics
	Computational cost
	I/O

	V Low Speed Hydrodynamics
	Incompressible Flow and Projection Methods
	Incompressible flow
	Projection methods
	Cell-centered approximate projection solver
	Advective velocity
	MAC projection
	Reconstruct interface states
	Provisional update
	Approximate projection

	Boundary conditions
	Bootstrapping
	Test problems
	Convergence test

	Extensions

	Low Mach Number Methods
	Low Mach divergence constraints
	Multigrid for Variable-Density Flows
	Test problem

	Atmospheric flows
	Equation Set
	Solution Procedure
	Timestep constraint
	Bootstrapping

	Combustion
	Species
	Constraint
	Solution Procedure

	VI Code Descriptions
	Using hydro_examples
	Introduction
	Getting hydro_examples
	hydro_examples codes

	Using pyro
	Introduction
	Getting pyro
	pyro solvers
	pyro's structure
	Running pyro
	Output and visualization
	Testing

	Using hydro1d
	Introduction
	Getting hydro1d
	hydro1d's structure
	Running hydro1d
	Problem setups

	References

